Transcriptome-scale similarities between mouse and human skeletal muscles with normal and myopathic phenotypes

[1]  Byron Boots,et al.  Evolution of visually guided behavior in artificial agents , 2007, Network.

[2]  Peter B. Delahunt,et al.  Bayesian model of human color constancy. , 2006, Journal of vision.

[3]  Edward H. Adelson,et al.  Estimating Intrinsic Component Images using Non-Linear Regression , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[4]  Wolfgang Härdle,et al.  Applied Multivariate Statistical Analysis: third edition , 2006 .

[5]  S. Grossberg,et al.  A neural model of surface perception: lightness, anchoring, and filling-in. , 2006, Spatial vision.

[6]  L. Kunkel,et al.  The influence of muscle type and dystrophin deficiency on murine expression profiles , 2005, Mammalian Genome.

[7]  L. Kunkel,et al.  Variations in gene expression among different types of human skeletal muscle , 2005, Muscle & nerve.

[8]  Peter J. Bentley,et al.  Evolving visually guided agents in an ambiguous virtual world , 2005, GECCO '05.

[9]  Doron Lancet,et al.  Genome-wide midrange transcription profiles reveal expression level relationships in human tissue specification , 2005, Bioinform..

[10]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[11]  M. McCourt,et al.  A unified theory of brightness contrast and assimilation incorporating oriented multiscale spatial filtering and contrast normalization , 2004, Vision Research.

[12]  R. Talmadge,et al.  Calcineurin activation influences muscle phenotype in a muscle-specific fashion , 2004, BMC Cell Biology.

[13]  Dale Purves,et al.  The statistical structure of natural light patterns determines perceived light intensity. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Isaac S Kohane,et al.  Conserved mechanisms across development and tumorigenesis revealed by a mouse development perspective of human cancers. , 2004, Genes & development.

[15]  J. D. Porter,et al.  Temporal gene expression profiling of dystrophin-deficient (mdx) mouse diaphragm identifies conserved and muscle group-specific mechanisms in the pathogenesis of muscular dystrophy. , 2004, Human molecular genetics.

[16]  G. Maréchal,et al.  Increased susceptibility of EDL muscles from mdx mice to damage induced by contractions with stretch , 1993, Journal of Muscle Research & Cell Motility.

[17]  D. Purves,et al.  Size Contrast and Assimilation Explained by the Statistics of Natural Scene Geometry , 2004, Journal of Cognitive Neuroscience.

[18]  T. Kizaki,et al.  Simple method for the identification of oxidative fibers in skeletal muscle , 2004, European Journal of Applied Physiology.

[19]  M. Ryan,et al.  Sarco(endo)plasmic reticulum Ca2+ ATPases (SERCA1 and -2) in human extraocular muscles. , 2003, Investigative ophthalmology & visual science.

[20]  S. Dakin,et al.  Natural image statistics mediate brightness ‘filling in’ , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[21]  Dale Purves,et al.  Natural scene statistics as the universal basis of color context effects , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[22]  L. Thornell,et al.  Myosin storage myopathy associated with a heterozygous missense mutation in MYH7 , 2003, Annals of neurology.

[23]  Francisco H Andrade,et al.  Constitutive properties, not molecular adaptations, mediate extraocular muscle sparing in dystrophic mdx mice , 2003, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[24]  Mei Han,et al.  Gene expression profiling of Duchenne muscular dystrophy skeletal muscle , 2003, Neurogenetics.

[25]  Tatsushi Toda,et al.  cDNA microarray analysis of individual Duchenne muscular dystrophy patients. , 2003, Human molecular genetics.

[26]  L. Kunkel,et al.  Gene expression comparison of biopsies from Duchenne muscular dystrophy (DMD) and normal skeletal muscle , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Dale Purves,et al.  A probabilistic explanation of brightness scaling , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[28]  M. Le Cunff,et al.  Global/temporal gene expression in diaphragm and hindlimb muscles of dystrophin-deficient (mdx) mice. , 2002, American journal of physiology. Cell physiology.

[29]  S. Gordon,et al.  Regenerated mdx mouse skeletal muscle shows differential mRNA expression. , 2002, Journal of applied physiology.

[30]  William A. Schmitt,et al.  Interactive exploration of microarray gene expression patterns in a reduced dimensional space. , 2002, Genome research.

[31]  K. Campbell,et al.  Muscular dystrophies involving the dystrophin-glycoprotein complex: an overview of current mouse models. , 2002, Current opinion in genetics & development.

[32]  Donald I. A. MacLeod,et al.  Influence of scene statistics on colour constancy , 2002, Nature.

[33]  L. Maloney,et al.  Color Constancy, Lightness Constancy, and the Articulation Hypothesis , 2002, Perception.

[34]  J. D. Porter,et al.  A chronic inflammatory response dominates the skeletal muscle molecular signature in dystrophin-deficient mdx mice. , 2002, Human molecular genetics.

[35]  W. Freeman,et al.  Learning local evidence for shading and reflectance , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[36]  Ann B. Lee Occlusion Models for Natural Images : A Statistical Study of a Scale-Invariant Dead Leaves Model , 2001 .

[37]  Eero P. Simoncelli,et al.  Natural image statistics and neural representation. , 2001, Annual review of neuroscience.

[38]  Eric P. Hoffman,et al.  Expression Profiling in the Muscular Dystrophies Identification of Novel Aspects of Molecular Pathophysiology , 2000 .

[39]  D. Purves,et al.  An empirical explanation of color contrast. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[40]  S. Bayol,et al.  The LIM-domain protein FHL1 (SLIM 1) exhibits functional regulation in skeletal muscle. , 2000, Molecular cell biology research communications : MCBRC.

[41]  J. Léger,et al.  Large-scale analysis of differential gene expression in the hindlimb muscles and diaphragm of mdx mouse. , 2000, Biochimica et biophysica acta.

[42]  M. McCourt,et al.  A multiscale spatial filtering account of the White effect, simultaneous brightness contrast and grating induction , 1999, Vision Research.

[43]  D. Purves,et al.  The effects of color on brightness , 1999, Nature Neuroscience.

[44]  A. Gilchrist,et al.  An anchoring theory of lightness perception. , 1999, Psychological review.

[45]  E. Adelson Lightness Perception and Lightness Illusions , 1999 .

[46]  J. Gillis,et al.  Consequences of the combined deficiency in dystrophin and utrophin on the mechanical properties and myosin composition of some limb and respiratory muscles of the mouse , 1998, Neuromuscular Disorders.

[47]  D. Brainard,et al.  Color constancy in the nearly natural image. 2. Achromatic loci. , 1998, Journal of the Optical Society of America. A, Optics, image science, and vision.

[48]  D. Macleod,et al.  Color appearance depends on the variance of surround colors , 1997, Current Biology.

[49]  I. Rayment,et al.  Mutations in either the essential or regulatory light chains of myosin are associated with a rare myopathy in human heart and skeletal muscle , 1996, Nature Genetics.

[50]  Xiaochuan Shan,et al.  Expression of human mitochondrial NADP‐dependent isocitrate dehydrogenase during lymphocyte activation , 1996, Journal of cellular biochemistry.

[51]  R. Lieber,et al.  Relationship between muscle fiber types and sizes and muscle architectural properties in the mouse hindlimb , 1994, Journal of morphology.

[52]  T. Sejnowski,et al.  A neural model of the cortical representation of egocentric distance. , 1994, Cerebral cortex.

[53]  J. Gilbert,et al.  A new human slow skeletal troponin T (TnTs) mRNA isoform derived from alternative splicing of a single gene. , 1994, Biochemical and biophysical research communications.

[54]  H. Sweeney,et al.  Adaptations in myosin heavy chain expression and contractile function in dystrophic mouse diaphragm. , 1993, The American journal of physiology.

[55]  V. Chapman,et al.  The Frequency of Revertants in mdx Mouse Genetic Models for Duchenne Muscular Dystrophy , 1992, Pediatric Research.

[56]  Geoffrey E. Hinton,et al.  Self-organizing neural network that discovers surfaces in random-dot stereograms , 1992, Nature.

[57]  Colin Blakemore,et al.  Statistical limits to image understanding , 1991 .

[58]  L. Kedes,et al.  Cloning, structural analysis, and expression of the human slow twitch skeletal muscle/cardiac troponin C gene. , 1990, The Journal of biological chemistry.

[59]  S. Solomon,et al.  A molecular basis for familial hypertrophic cardiomyopathy: An α β cardiac myosin heavy chain hybrid gene , 1990, Cell.

[60]  J. Seidman,et al.  A molecular basis for familial hypertrophic cardiomyopathy: A β cardiac myosin heavy chain gene missense mutation , 1990, Cell.

[61]  L. Kedes,et al.  cDNA sequence, tissue-specific expression, and chromosomal mapping of the human slow-twitch skeletal muscle isoform of troponin I. , 1990, Genomics.

[62]  S. Solomon,et al.  A molecular basis for familial hypertrophic cardiomyopathy: an alpha/beta cardiac myosin heavy chain hybrid gene. , 1990, Cell.

[63]  E A Barnard,et al.  The molecular basis of muscular dystrophy in the mdx mouse: a point mutation. , 1989, Science.

[64]  U. Francke,et al.  Human ventricular/slow twitch myosin alkali light chain gene characterization, sequence, and chromosomal location. , 1989, The Journal of biological chemistry.

[65]  V. Chapman,et al.  Recovery of induced mutations for X chromosome-linked muscular dystrophy in mice. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[66]  K. Davies,et al.  Localization of the mdx mutation within the mouse dystrophin gene. , 1988, The EMBO journal.

[67]  Y. Yazaki,et al.  Molecular cloning and characterization of human cardiac alpha- and beta-form myosin heavy chain complementary DNA clones. Regulation of expression during development and pressure overload in human atrium. , 1988, The Journal of clinical investigation.

[68]  Terrence J. Sejnowski,et al.  Network model of shape-from-shading: neural function arises from both receptive and projective fields , 1988, Nature.

[69]  J. A. Anderson,et al.  Associative learning of scene parameters from images. , 1987, Applied optics.

[70]  W. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[71]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[72]  K. Moore,et al.  X chromosome-linked muscular dystrophy (mdx) in the mouse. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[73]  Richard A. Johnson,et al.  Applied Multivariate Statistical Analysis , 1983 .

[74]  D. Wolfe,et al.  Nonparametric Statistical Methods. , 1974 .

[75]  H. M. Gunn,et al.  Histochemical fibre types in the mammalian diaphragm. , 1972, Journal of anatomy.

[76]  S. S. Stevens Concerning the measurement of brightness. , 1966, Journal of the Optical Society of America.