The surprisingly high human efficiency at learning to recognize faces

[1]  Philip J. Kellman,et al.  Classification images reveal interpolation in dynamic displays , 2010 .

[2]  Craig K. Abbey,et al.  The efficiency of perceptual learning in a visual detection task , 2010 .

[3]  Q. Lu,et al.  Poster Presentation , 2012, Hepatology international.

[4]  L. Maloney,et al.  Perceptual organization and neural computation. , 2008, Journal of vision.

[5]  Miguel P Eckstein,et al.  Contrast and stimulus information effects in rapid learning of a visual task. , 2008, Journal of vision.

[6]  Jason J S Barton,et al.  Information Processing during Face Recognition: The Effects of Familiarity, Inversion, and Morphing on Scanning Fixations , 2006, Perception.

[7]  Bruno Rossion,et al.  Holistic Processing Is Finely Tuned for Faces of One's Own Race , 2006, Psychological science.

[8]  Miguel P Eckstein,et al.  Classification images for detection, contrast discrimination, and identification tasks with a common ideal observer. , 2006, Journal of vision.

[9]  H. Leder,et al.  When Feature Information Comes First! Early Processing of Inverted Faces , 2005, Perception.

[10]  Kim M. Dalton,et al.  Gaze fixation and the neural circuitry of face processing in autism , 2005, Nature Neuroscience.

[11]  D. Pelli,et al.  Are faces processed like words? A diagnostic test for recognition by parts. , 2005, Journal of vision.

[12]  M. Eckstein,et al.  Perceptual learning through optimization of attentional weighting: human versus optimal Bayesian learner. , 2004, Journal of vision.

[13]  D. Moore,et al.  Early and rapid perceptual learning , 2004, Nature Neuroscience.

[14]  Ione Fine,et al.  Interactions between contrast, coherence and directional tuning , 2004 .

[15]  Roger W Li,et al.  Perceptual learning improves efficiency by re-tuning the decision 'template' for position discrimination , 2004, Nature Neuroscience.

[16]  Denis G. Pelli,et al.  The remarkable inefficiency of word recognition , 2003, Nature.

[17]  Miguel P Eckstein,et al.  Comparison of two weighted integration models for the cueing task: linear and likelihood. , 2003, Journal of vision.

[18]  P. Schyns,et al.  Show Me the Features! Understanding Recognition From the Use of Visual Information , 2002, Psychological science.

[19]  D. Maurer,et al.  The many faces of configural processing , 2002, Trends in Cognitive Sciences.

[20]  Robert A Jacobs,et al.  Comparing perceptual learning tasks: a review. , 2002, Journal of vision.

[21]  C. Gilbert,et al.  The Neural Basis of Perceptual Learning , 2001, Neuron.

[22]  K. Nakayama,et al.  Categorical perception of face identity in noise isolates configural processing. , 2001, Journal of experimental psychology. Human perception and performance.

[23]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[24]  N. Kanwisher Domain specificity in face perception , 2000, Nature Neuroscience.

[25]  Christopher W. Tyler,et al.  Spatial summation of face information , 2000, Electronic Imaging.

[26]  J. Haxby,et al.  The distributed human neural system for face perception , 2000, Trends in Cognitive Sciences.

[27]  V. Bruce,et al.  The Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology When Inverted Faces Are Recognized: the Role of Configural Information in Face Recognition , 2022 .

[28]  A. B. Sekuler,et al.  Signal but not noise changes with perceptual learning , 1999, Nature.

[29]  N. Qian,et al.  Perceptual learning on orientation and direction discrimination , 1999, Vision Research.

[30]  B. Dosher,et al.  Mechanisms of perceptual learning , 1999, Vision Research.

[31]  Z L Lu,et al.  Perceptual learning reflects external noise filtering and internal noise reduction through channel reweighting. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[32]  C. Gilbert,et al.  Attention and Perceptual Learning Modulate Contextual Influences on Visual Perception , 1998, Neuron.

[33]  B. Dosher,et al.  External noise distinguishes attention mechanisms , 1998, Vision Research.

[34]  M. Tarr,et al.  Becoming a “Greeble” Expert: Exploring Mechanisms for Face Recognition , 1997, Vision Research.

[35]  S. Hochstein,et al.  Task difficulty and the specificity of perceptual learning , 1997, Nature.

[36]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[37]  Wendy L. Braje,et al.  Human efficiency for recognizing 3-D objects in luminance noise , 1995, Vision Research.

[38]  Gordon E. Legge,et al.  Human efficiency for recognizing and detecting low-pass filtered objects , 1995, Vision Research.

[39]  D. Levi,et al.  Perceptual learning in vernier acuity: What is learned? , 1995, Vision Research.

[40]  David C. Knill,et al.  Object classification for human and ideal observers , 1995, Vision Research.

[41]  M. Farah,et al.  What causes the face inversion effect? , 1995, Journal of experimental psychology. Human perception and performance.

[42]  A. Karni,et al.  The time course of learning a visual skill , 1993, Nature.

[43]  S. Hochstein,et al.  Attentional control of early perceptual learning. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[44]  M. Farah,et al.  Parts and Wholes in Face Recognition , 1993, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[45]  D Sagi,et al.  Where practice makes perfect in texture discrimination: evidence for primary visual cortex plasticity. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[46]  R. Sekuler,et al.  Direction-specific improvement in motion discrimination , 1987, Vision Research.

[47]  A J Ahumada,et al.  Putting the visual system noise back in the picture. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[48]  I. Biederman Recognition-by-components: a theory of human image understanding. , 1987, Psychological review.

[49]  S. Carey,et al.  Why faces are and are not special: an effect of expertise. , 1986, Journal of experimental psychology. General.

[50]  R. Sekuler,et al.  A specific and enduring improvement in visual motion discrimination. , 1982, Science.

[51]  R. F. Wagner,et al.  Efficiency of human visual signal discrimination. , 1981, Science.

[52]  A. Fiorentini,et al.  Perceptual learning specific for orientation and spatial frequency , 1980, Nature.

[53]  H. Barlow The absolute efficiency of perceptual decisions. , 1980, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[54]  H. Barlow,et al.  The versatility and absolute efficiency of detecting mirror symmetry in random dot displays , 1979, Vision Research.

[55]  D. Scott Perceptual learning. , 1974, Queen's nursing journal.

[56]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[57]  D. M. Green,et al.  Signal detection theory and psychophysics , 1966 .

[58]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[59]  Vision Research , 1961, Nature.

[60]  W. W. Peterson,et al.  The theory of signal detectability , 1954, Trans. IRE Prof. Group Inf. Theory.

[61]  C. Whitman THE ADVANTAGES OF STUDY AT THE NAPLES ZOOLOGICAL STATION. , 1883, Science.