Multimodel analysis and controller design for nonlinear processes

Multimodel analysis and controller design for nonlinear processes via gap metric is discussed. It is shown that the loop-shaping H∞ approach can integrate the procedure of selecting operating points and the local controller design. The local controllers can guarantee not only stability but also performance specified by the pre- and/or post-compensators. Thus, at each operating points, local controllers can have similar performance, and the global performance of the system can be predicted. © 2004 Elsevier Ltd. All rights reserved.

[1]  T. Georgiou,et al.  Optimal robustness in the gap metric , 1990 .

[2]  A. B. Poore,et al.  On the dynamic behavior of continuous stirred tank reactors , 1974 .

[3]  M. A. Henson,et al.  Input‐output linearization of general nonlinear processes , 1990 .

[4]  J. Doyle,et al.  Essentials of Robust Control , 1997 .

[5]  Martin Guay,et al.  Measurement of nonlinearity in chemical process control systems: The steady state map , 1995 .

[6]  正美 佐伯,et al.  D. C. MacFarlane and K. Glover, Robust Controller Design Using Normalized Coprime Factor Plant Description(Lecture Notes in Control and Information Sciences, no. 138), Springer-Vorlag, 1991, 206+xpages , 1992 .

[7]  Graham C. Goodwin,et al.  Supervisory multiple regime control , 2003 .

[8]  Michael G. Safonov,et al.  Conservatism of the gap metric , 1993, IEEE Trans. Autom. Control..

[9]  H. Koivo Fuzzy gain scheduling of mimo pid controllers for nonlinear multivariable systems , 2002, IEEE International Conference on Systems, Man and Cybernetics.

[10]  Francis J. Doyle,et al.  Dynamic gain scheduled process control , 1998 .

[11]  Jose A. Romagnoli,et al.  Robust H∞ control of nonlinear plants based on multi-linear models : an application to a bench-scale pH neutralization reactor , 2000 .

[12]  A. El-Sakkary,et al.  The gap metric: Robustness of stabilization of feedback systems , 1985 .

[13]  Frank Allgöwer,et al.  Nonlinearity measures: definition, computation and applications , 2000 .

[14]  Roderick Murray-Smith,et al.  Multiple Model Approaches to Modelling and Control , 1997 .

[15]  Ian Postlethwaite,et al.  Multivariable Feedback Control: Analysis and Design , 1996 .

[16]  M. Sami Fadali,et al.  Selecting operating points for discrete-time gain scheduling , 2003, Comput. Electr. Eng..

[17]  Jose A. Romagnoli,et al.  Gap Metric Concept and Implications for Multilinear Model-Based Controller Design , 2003 .