On minimum sum representations for weighted voting games

A proposal in a weighted voting game is accepted if the sum of the (non-negative) weights of the “yea” voters is at least as large as a given quota. Several authors have considered representations of weighted voting games with minimum sum, where the weights and the quota are restricted to be integers. In Freixas and Molinero (Ann. Oper. Res. 166:243–260, 2009) the authors have classified all weighted voting games without a unique minimum sum representation for up to 8 voters. Here we exhaustively classify all weighted voting games consisting of 9 voters which do not admit a unique minimum sum integer weight representation.

[1]  Sascha Kurz,et al.  On the inverse power index problem , 2012, ArXiv.

[2]  John R. Isbell,et al.  On the enumeration of majority games , 1959 .

[3]  R. Read Every one a Winner or how to Avoid Isomorphism Search when Cataloguing Combinatorial Configurations , 1978 .

[4]  Josep Freixas,et al.  Complete simple games , 1996 .

[5]  Peter Sudhölter,et al.  The Modified Nucleolus as Canonical Representation of Weighted Majority Games , 1996, Math. Oper. Res..

[6]  Saburo Muroga,et al.  Enumeration of Threshold Functions of Eight Variables , 1970, IEEE Transactions on Computers.

[7]  Nikolas Tautenhahn Enumeration einfacher Spiele mit Anwendungen in der Stimmgewichtsverteilung , 2008 .

[8]  Yingqian Zhang,et al.  Enumeration and exact design of weighted voting games , 2010, AAMAS.

[9]  Noga Alon,et al.  The inverse Banzhaf problem , 2010, Soc. Choice Welf..

[10]  Bruno Simeone,et al.  Polynomial-time algorithms for regular set-covering and threshold synthesis , 1985, Discret. Appl. Math..

[11]  S. Muroga,et al.  Majority Decision Functions of up to Six Variables , 1962 .

[13]  B. D. Keijzer On the Design and Synthesis of Voting Games , 2009 .

[14]  Sascha Kurz,et al.  On Dedekind’s problem for complete simple games , 2010, Int. J. Game Theory.

[15]  J. R. Isbell,et al.  A class of simple games , 1958 .

[16]  Peter Sudhölter,et al.  Directed and weighted majority games , 1995, Math. Methods Oper. Res..

[17]  Sampo Niskanen,et al.  Cliquer user's guide, version 1.0 , 2003 .

[18]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[19]  Patric R. J. Östergård,et al.  A fast algorithm for the maximum clique problem , 2002, Discret. Appl. Math..

[20]  Josep Freixas,et al.  Weighted games without a unique minimal representation in integers , 2010, Optim. Methods Softw..

[21]  Robert O. Winder,et al.  Enumeration of Seven-Argument Threshold Functions , 1965, IEEE Trans. Electron. Comput..

[22]  William S. Zwicker,et al.  Simple games - desirability relations, trading, pseudoweightings , 1999 .

[23]  Josep Freixas,et al.  On the existence of a minimum integer representation for weighted voting systems , 2009, Ann. Oper. Res..