Quantifying the magic of quantum channels

To achieve universal quantum computation via general fault-tolerant schemes, stabilizer operations must be supplemented with other non-stabilizer quantum resources. Motivated by this necessity, we develop a resource theory for magic quantum channels to characterize and quantify the quantum "magic" or non-stabilizerness of noisy quantum circuits. For qudit quantum computing with odd dimension $d$, it is known that quantum states with non-negative Wigner function can be efficiently simulated classically. First, inspired by this observation, we introduce a resource theory based on completely positive-Wigner-preserving quantum operations as free operations, and we show that they can be efficiently simulated via a classical algorithm. Second, we introduce two efficiently computable magic measures for quantum channels, called the mana and thauma of a quantum channel. As applications, we show that these measures not only provide fundamental limits on the distillable magic of quantum channels, but they also lead to lower bounds for the task of synthesizing non-Clifford gates. Third, we propose a classical algorithm for simulating noisy quantum circuits, whose sample complexity can be quantified by the mana of a quantum channel. We further show that this algorithm can outperform another approach for simulating noisy quantum circuits, based on channel robustness. Finally, we explore the threshold of non-stabilizerness for basic quantum circuits under depolarizing noise.

[1]  Christopher Ferrie,et al.  Quasi-probability representations of quantum theory with applications to quantum information science , 2010, 1010.2701.

[2]  M. Sion On general minimax theorems , 1958 .

[3]  Peter Selinger,et al.  Quantum circuits of T-depth one , 2012, ArXiv.

[4]  Robert W. Spekkens,et al.  Reconstruction of Gaussian quantum mechanics from Liouville mechanics with an epistemic restriction , 2011, 1111.5057.

[5]  A. Winter,et al.  Resource theory of coherence: Beyond states , 2017, 1704.03710.

[6]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[7]  Neil J. Ross,et al.  Optimal ancilla-free Clifford+T approximation of z-rotations , 2014, Quantum Inf. Comput..

[8]  Gilad Gour,et al.  Comparison of Quantum Channels by Superchannels , 2018, IEEE Transactions on Information Theory.

[9]  F. Verstraete,et al.  The χ2-divergence and mixing times of quantum Markov processes , 2010, 1005.2358.

[10]  Nilanjana Datta,et al.  Min- and Max-Relative Entropies and a New Entanglement Monotone , 2008, IEEE Transactions on Information Theory.

[11]  Dianne P. O'Leary,et al.  Efficient circuits for exact-universal computationwith qudits , 2006, Quantum Inf. Comput..

[12]  Debbie W. Leung,et al.  On the capacities of bipartite Hamiltonians and unitary gates , 2002, IEEE Trans. Inf. Theory.

[13]  Mark M. Wilde,et al.  Efficiently computable bounds for magic state distillation , 2018, Physical review letters.

[14]  W. Wootters A Wigner-function formulation of finite-state quantum mechanics , 1987 .

[15]  Jeongwan Haah,et al.  Magic state distillation with low space overhead and optimal asymptotic input count , 2017, 1703.07847.

[16]  Mark Howard,et al.  Application of a Resource Theory for Magic States to Fault-Tolerant Quantum Computing. , 2016, Physical review letters.

[17]  D. Leung,et al.  Methodology for quantum logic gate construction , 2000, quant-ph/0002039.

[18]  Andreas Winter,et al.  Erratum: Resource theory of coherence: Beyond states [Phys. Rev. A 95 , 062327 (2017)] , 2017 .

[19]  Christoph Hirche,et al.  Amortized channel divergence for asymptotic quantum channel discrimination , 2018, Letters in Mathematical Physics.

[20]  D. Browne,et al.  Qutrit magic state distillation , 2012, 1202.2326.

[21]  D. Gottesman Fault-Tolerant Quantum Computation with Higher-Dimensional Systems , 1998, quant-ph/9802007.

[22]  Eneet Kaur,et al.  Extendibility limits the performance of quantum processors , 2019, Physical review letters.

[23]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[24]  Martin B. Plenio,et al.  A note on coherence power of n-dimensional unitary operators , 2016, Quantum Inf. Comput..

[25]  Hillary Dawkins,et al.  Qutrit Magic State Distillation Tight in Some Directions. , 2015, Physical review letters.

[26]  D. Petz Quasi-entropies for finite quantum systems , 1986 .

[27]  R. Werner,et al.  Counterexample to an additivity conjecture for output purity of quantum channels , 2002, quant-ph/0203003.

[28]  M. Christandl,et al.  Relative Entropy Bounds on Quantum, Private and Repeater Capacities , 2016, Communications in Mathematical Physics.

[29]  Christopher Ferrie,et al.  Frame representations of quantum mechanics and the necessity of negativity in quasi-probability representations , 2007, 0711.2658.

[30]  Runyao Duan,et al.  Non-Asymptotic Entanglement Distillation , 2017, IEEE Transactions on Information Theory.

[31]  S. Bravyi,et al.  Magic-state distillation with low overhead , 2012, 1209.2426.

[32]  Naresh Sharma,et al.  Fundamental bound on the reliability of quantum information transmission , 2012, Physical review letters.

[33]  Joel J. Wallman,et al.  Estimating Outcome Probabilities of Quantum Circuits Using Quasiprobabilities. , 2015, Physical review letters.

[34]  Mark M. Wilde,et al.  Cost of quantum entanglement simplified , 2020, Physical review letters.

[35]  J. Tillich,et al.  Towards Low Overhead Magic State Distillation. , 2018, Physical review letters.

[36]  Naresh Sharma,et al.  On the strong converses for the quantum channel capacity theorems , 2012, ArXiv.

[37]  D. O’Leary,et al.  Asymptotically optimal quantum circuits for d-level systems. , 2004, Physical review letters.

[38]  Eric M. Rains A semidefinite program for distillable entanglement , 2001, IEEE Trans. Inf. Theory.

[39]  H. Umegaki Conditional expectation in an operator algebra. IV. Entropy and information , 1962 .

[40]  Mario Berta,et al.  Amortization does not enhance the max-Rains information of a quantum channel , 2017, ArXiv.

[41]  Hai‐Rui Wei,et al.  Optimal synthesis of multivalued quantum circuits , 2015, 1506.04394.

[42]  Scott Aaronson,et al.  Improved Simulation of Stabilizer Circuits , 2004, ArXiv.

[43]  William Matthews,et al.  A Linear Program for the Finite Block Length Converse of Polyanskiy–Poor–Verdú Via Nonsignaling Codes , 2011, IEEE Transactions on Information Theory.

[44]  Mark M. Wilde,et al.  Strong Converse Exponents for a Quantum Channel Discrimination Problem and Quantum-Feedback-Assisted Communication , 2014, Communications in Mathematical Physics.

[45]  Eneet Kaur,et al.  Amortized entanglement of a quantum channel and approximately teleportation-simulable channels , 2017, ArXiv.

[46]  R. Renner,et al.  One-shot classical-quantum capacity and hypothesis testing. , 2010, Physical review letters.

[47]  Dmitri Maslov,et al.  Polynomial-Time T-Depth Optimization of Clifford+T Circuits Via Matroid Partitioning , 2013, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[48]  Serge Fehr,et al.  On quantum Rényi entropies: A new generalization and some properties , 2013, 1306.3142.

[49]  Man-Duen Choi Completely positive linear maps on complex matrices , 1975 .

[50]  Xin Wang,et al.  Using and reusing coherence to realize quantum processes , 2018, Quantum.

[51]  A. Harrow,et al.  Practical scheme for quantum computation with any two-qubit entangling gate. , 2002, Physical Review Letters.

[52]  Mark Howard,et al.  Qudit versions of the qubit "pi-over-eight" gate , 2012, 1206.1598.

[53]  Runyao Duan,et al.  Improved semidefinite programming upper bound on distillable entanglement , 2016, 1601.07940.

[54]  Runyao Duan,et al.  Nonadditivity of Rains' bound for distillable entanglement , 2016, 1605.00348.

[55]  Earl T Campbell,et al.  Enhanced fault-tolerant quantum computing in d-level systems. , 2014, Physical review letters.

[56]  Vahid Karimipour,et al.  Cohering and decohering power of quantum channels , 2015, 1506.02304.

[57]  Cody Jones,et al.  Multilevel distillation of magic states for quantum computing , 2012, 1210.3388.

[58]  B. Terhal,et al.  Roads towards fault-tolerant universal quantum computation , 2016, Nature.

[59]  Christopher Ferrie,et al.  Framed Hilbert space: hanging the quasi-probability pictures of quantum theory , 2009, 0903.4843.

[60]  Mark M. Wilde,et al.  Entanglement cost and quantum channel simulation , 2018, Physical Review A.

[61]  M. Horodecki,et al.  Properties of quantum nonsignaling boxes , 2006 .

[62]  Andrew W. Cross,et al.  Fault-tolerant magic state preparation with flag qubits , 2018, Quantum.

[63]  Hai-Rui Wei,et al.  Synthesis of multivalued quantum logic circuits by elementary gates , 2013, 1302.0056.

[64]  Earl Campbell,et al.  Quantifying magic for multi-qubit operations , 2019, Proceedings of the Royal Society A.

[65]  D. Gross Hudson's theorem for finite-dimensional quantum systems , 2006, quant-ph/0602001.

[66]  Mark M. Wilde,et al.  Strong Converse for the Classical Capacity of Entanglement-Breaking and Hadamard Channels via a Sandwiched Rényi Relative Entropy , 2013, Communications in Mathematical Physics.

[67]  G. D’Ariano,et al.  Transforming quantum operations: Quantum supermaps , 2008, 0804.0180.

[68]  John Watrous,et al.  Semidefinite Programs for Completely Bounded Norms , 2009, Theory Comput..

[69]  William Kretschmer,et al.  Simulation of qubit quantum circuits via Pauli propagation , 2019, Physical Review A.

[70]  Victor Veitch,et al.  Contextuality supplies the ‘magic’ for quantum computation , 2014, Nature.

[71]  Jr.,et al.  Multivalued logic gates for quantum computation , 2000, quant-ph/0002033.

[72]  G. Gour,et al.  Quantum resource theories , 2018, Reviews of Modern Physics.

[73]  A. Jamiołkowski Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .

[74]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[75]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[76]  Neil J. Ross,et al.  Canonical forms for single-qutrit Clifford+T operators , 2019, Annals of Physics.

[77]  S. Aaronson,et al.  Improved simulation of stabilizer circuits (14 pages) , 2004 .

[78]  Xin Wang,et al.  Exact entanglement cost of quantum states and channels under PPT-preserving operations , 2018, ArXiv.

[79]  Saikat Guha,et al.  The Squashed Entanglement of a Quantum Channel , 2013, IEEE Transactions on Information Theory.

[80]  William Matthews,et al.  Converses from non-signalling codes and their relationship to converses from hypothesis testing , 2016 .

[81]  Victor Veitch,et al.  The resource theory of stabilizer quantum computation , 2013, 1307.7171.

[82]  Earl T. Campbell,et al.  Magic state parity-checker with pre-distilled components , 2017, 1709.02214.

[83]  J. Emerson,et al.  Corrigendum: Negative quasi-probability as a resource for quantum computation , 2012, 1201.1256.

[84]  David Gross,et al.  Non-negative Wigner functions in prime dimensions , 2007 .

[85]  N. Datta,et al.  Approaches for approximate additivity of the Holevo information of quantum channels , 2017, Physical Review A.

[86]  J. Smolin,et al.  Trading Classical and Quantum Computational Resources , 2015, 1506.01396.

[87]  Mark M. Wilde,et al.  Strong Converse Rates for Quantum Communication , 2014, IEEE Transactions on Information Theory.

[88]  M. Horodecki,et al.  Mixed-State Entanglement and Distillation: Is there a “Bound” Entanglement in Nature? , 1998, quant-ph/9801069.

[89]  J Eisert,et al.  Positive Wigner functions render classical simulation of quantum computation efficient. , 2012, Physical review letters.

[90]  Gilad Gour,et al.  Quantum relative Lorenz curves , 2016, 1607.05735.

[91]  Runyao Duan,et al.  A semidefinite programming upper bound of quantum capacity , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[92]  Michele Mosca,et al.  An algorithm for the T-count , 2013, Quantum Inf. Comput..

[93]  Jeongwan Haah,et al.  Distillation with Sublogarithmic Overhead. , 2017, Physical review letters.

[94]  Martin Rötteler,et al.  Quantum arithmetic and numerical analysis using Repeat-Until-Success circuits , 2014, Quantum Inf. Comput..

[95]  S. Verdú,et al.  Arimoto channel coding converse and Rényi divergence , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[96]  Shiroman Prakash,et al.  Normal form for single-qutrit Clifford+Toperators and synthesis of single-qutrit gates , 2018, Physical Review A.

[97]  Xin Wang,et al.  Semidefinite Programming Converse Bounds for Quantum Communication , 2017, IEEE Transactions on Information Theory.

[98]  Barry C. Sanders,et al.  Quantification and manipulation of magic states , 2017, Physical Review A.

[99]  Mario Berta,et al.  Quantum coding with finite resources , 2015, Nature Communications.

[100]  Peter W. Shor,et al.  Fault-tolerant quantum computation , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[101]  Cody Jones,et al.  Low-overhead constructions for the fault-tolerant Toffoli gate , 2012, 1212.5069.

[102]  M. S. Leifer,et al.  Optimal entanglement generation from quantum operations , 2003 .

[103]  I. Chuang,et al.  Quantum Teleportation is a Universal Computational Primitive , 1999, quant-ph/9908010.