Estimation of the Thurstonian model for the 2-AC protocol

[1]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[2]  Daniel M. Ennis,et al.  Accounting for no difference/preference responses or ties in choice experiments , 2012 .

[3]  P. Brockhoff,et al.  Statistical and Thurstonian models for the A-not A protocol with and without sureness , 2011 .

[4]  Kwang-Ok Kim,et al.  PAIRED PREFERENCE TESTS: USE OF PLACEBO STIMULI WITH LIKING AND BUYING PREFERENCES , 2011 .

[5]  Alan Agresti,et al.  Categorical Data Analysis , 2003 .

[6]  R. Christensen Regression Models for Ordinal Data Introducing R-package ordinal , 2011 .

[7]  Tormod Næs,et al.  Statistics for Sensory and Consumer Science , 2010 .

[8]  Min-A Kim,et al.  Comparison of d′ estimates produced by three versions of a duo-trio test for discriminating tomato juices with varying salt concentrations: The effects of the number and position of the reference stimulus , 2010 .

[9]  W. Greene,et al.  Modeling Ordered Choices: A Primer , 2010 .

[10]  J. C. Castura Equivalence testing: A brief review , 2010 .

[11]  P. Brockhoff,et al.  Thurstonian models for sensory discrimination tests as generalized linear models , 2010 .

[12]  P. Brockhoff,et al.  Estimation and inference in the same–different test , 2009 .

[13]  Harry Joe,et al.  Accuracy of Laplace approximation for discrete response mixed models , 2008, Comput. Stat. Data Anal..

[14]  Michael O'Mahony,et al.  PAIRED PREFERENCE TESTS USING PLACEBO PAIRS AND DIFFERENT RESPONSE OPTIONS FOR CHIPS, ORANGE JUICES AND COOKIES , 2008 .

[15]  Russell A. Boyles,et al.  The Role of Likelihood in Interval Estimation , 2008 .

[16]  Kwang-Ok Kim,et al.  Difference test sensitivity: Comparison of three versions of the duo–trio method requiring different memory schemes and taste sequences , 2008 .

[17]  M. Meyners Proper and improper use and interpretation of Beta-binomial models in the analysis of replicated difference and preference tests , 2007 .

[18]  Michael O'Mahony,et al.  Be your own placebo: A double paired preference test approach for establishing expected frequencies , 2007 .

[19]  Jian Bi,et al.  Sensory Discrimination Tests and Measurements: Statistical Principles, Procedures and Tables , 2006 .

[20]  Harry T. Lawless,et al.  SOURCES OF ERROR AND THE NO-PREFERENCE OPTION IN DAIRY PRODUCT TESTING , 2005 .

[21]  Michael O'Mahony,et al.  The paired preference test and the 'No Preference' option : Was odesky correct? , 2005 .

[22]  Michael O'Mahony,et al.  PAIRED PREFERENCE TESTS: d′ VALUES FROM MEXICAN CONSUMERS WITH VARIOUS RESPONSE OPTIONS , 2005 .

[23]  M. O'Mahony,et al.  Corroborating the 2-AFC and 2-AC Thurstonian models using both a model system and sparkling water , 2004 .

[24]  Hans Bruun Nielsen,et al.  Introduction to Numerical Computation--Analysis and MATLAB Illustrations , 2004 .

[25]  The statistical power of replications in difference tests , 2003 .

[26]  Michael O'Mahony,et al.  Discrimination testing: a few ideas, old and new , 2003 .

[27]  Y. Pawitan In all likelihood : statistical modelling and inference using likelihood , 2002 .

[28]  M. O'Mahony,et al.  Investigating more powerful discrimination tests with consumers: effects of memory and response bias , 2002 .

[29]  J. Kunert On repeated difference testing , 2001 .

[30]  Yudi Pawitan,et al.  A Reminder of the Fallibility of the Wald Statistic: Likelihood Explanation , 2000 .

[31]  Michael Meyners,et al.  On the triangle test with replications , 1999 .

[32]  Jian Bi,et al.  THE DIRICHLET‐MULTINOMIAL MODEL: ACCOUNTING FOR INTER‐TRIAL VARIATION IN REPLICATED RATINGS , 1999 .

[33]  Modelling Ties in the Sign Test , 1999, Biometrics.

[34]  Harry T. Lawless,et al.  Sensory Evaluation of Food , 1999 .

[35]  D. Ennis,et al.  THE BETA‐BINOMIAL MODEL: ACCOUNTING FOR INTER‐TRIAL VARIATION IN REPLICATED DIFFERENCE AND PREFERENCE TESTS , 1998 .

[36]  D. Ennis,et al.  A THURSTONIAN VARIANT OF THE BETA‐BINOMIAL MODEL FOR REPLICATED DIFFERENCE TESTS , 1998 .

[37]  Jian Bi,et al.  HOW TO ESTIMATE AND USE THE VARIANCE OF d’ FROM DIFFERENCE TESTS , 1997 .

[38]  C. W. Coakley,et al.  Versions of the Sign Test in the Presence of Ties , 1996 .

[39]  A. W. MacRae,et al.  Confidence intervals for the triangle test can give reassurance that products are similar , 1995 .

[40]  L. Thurstone A law of comparative judgment. , 1994 .

[41]  Neil A. Macmillan,et al.  Detection Theory: A User's Guide , 1991 .

[42]  Timothy R. C. Read,et al.  Pearsons-X2 and the loglikelihood ratio statistic-G2: a comparative review , 1989 .

[43]  P. McCullagh Regression Models for Ordinal Data , 1980 .

[44]  R. Davidson On Extending the Bradley-Terry Model to Accommodate Ties in Paired Comparison Experiments , 1970 .

[45]  D. Dorfman,et al.  Maximum-likelihood estimation of parameters of signal-detection theory and determination of confidence intervals—Rating-method data , 1969 .

[46]  P. V. Rao,et al.  Ties in Paired-Comparison Experiments: A Generalization of the Bradley-Terry Model , 1967 .

[47]  D. M. Green,et al.  Signal detection theory and psychophysics , 1966 .

[48]  N. T. Gridgeman Pair Comparison, with and without Ties , 1959 .

[49]  J. Putter The Treatment of Ties in Some Nonparametric Tests , 1955 .

[50]  R. A. Bradley,et al.  Rank Analysis of Incomplete Block Designs: I. The Method of Paired Comparisons , 1952 .

[51]  R. A. Bradley,et al.  RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS THE METHOD OF PAIRED COMPARISONS , 1952 .

[52]  L. L. Thurstone,et al.  Three psychophysical laws. , 1927 .

[53]  L. Richardson,et al.  The Deferred Approach to the Limit. Part I. Single Lattice. Part II. Interpenetrating Lattices , 1927 .

[54]  L. Richardson The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, with an Application to the Stresses in a Masonry Dam , 1911 .