Interstitial diffusion of hydrogen in M7C

[1]  V. Vykhodets,et al.  Debye Temperature and Quantum Diffusion of Hydrogen in Body-Centered Cubic Metals , 2022, ACS omega.

[2]  Liang Zhao,et al.  First Principles Investigation of Binary Chromium Carbides Cr7C3, Cr3C2 and Cr23C6: Electronic Structures, Mechanical Properties and Thermodynamic Properties under Pressure , 2022, Materials.

[3]  C. Weinberger,et al.  Hydrogen Trapping and Storage in the Group IVB-VIB Transition Metal Carbides , 2022, Materials & Design.

[4]  Mao-qiu Wang,et al.  Atomistic insight into hydrogen trapping at MC/BCC-Fe phase boundaries: The role of local atomic environment , 2021 .

[5]  Yuelin Liu,et al.  First-principles simulation of h interacting with transition elements in molybdenum for nuclear material application , 2020 .

[6]  R. Pippan,et al.  Hydrogen Trapping in bcc Iron , 2020, Materials.

[7]  Xiaoping Yang,et al.  Structure, Magnetism, Electronic Properties and High Magnetic-Field-Induced Stability of Alloy Carbide M7C3 , 2021, SSRN Electronic Journal.

[8]  D. Connétable Theoretical study on hydrogen solubility and diffusivity in the γ-TiAl L10 structure , 2019, International Journal of Hydrogen Energy.

[9]  Taekyung Lee,et al.  Comparative study on the effects of Cr, V, and Mo carbides for hydrogen-embrittlement resistance of tempered martensitic steel , 2019, Scientific Reports.

[10]  M. Koyama,et al.  First-Principles Study on Hydrogen Diffusivity in BCC, FCC, and HCP Iron , 2018, Metallurgical and Materials Transactions A.

[11]  M. Ceriotti,et al.  Hydrogen Diffusion and Trapping in α-Iron: The Role of Quantum and Anharmonic Fluctuations. , 2018, Physical review letters.

[12]  J. Kermode,et al.  Understanding and mitigating hydrogen embrittlement of steels: a review of experimental, modelling and design progress from atomistic to continuum , 2018, Journal of Materials Science.

[13]  M. Shiga,et al.  Mechanism of fast lattice diffusion of hydrogen in palladium: Interplay of quantum fluctuations and lattice strain , 2018 .

[14]  R. Dronskowski,et al.  The Role of κ-Carbides as Hydrogen Traps in High-Mn Steels , 2017 .

[15]  A. V. Verkhovykh,et al.  Ab initio modelling of the interaction of H interstitials with grain boundaries in bcc Fe , 2016 .

[16]  C. Elsässer,et al.  First-principles investigation of quantum mechanical effects on the diffusion of hydrogen in iron and nickel , 2015 .

[17]  P. Olsson,et al.  On the role of hydrogen filled vacancies on the embrittlement of zirconium: An ab initio investigation , 2015 .

[18]  Zhijuan Zhang,et al.  Direct observation of hydrogen-trapping sites in newly developed high-strength mooring chain steel by atom probe tomography , 2013 .

[19]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[20]  M. Selleby,et al.  Structural Determination of (Cr,Co)7C3 , 2013 .

[21]  Graeme Henkelman,et al.  A generalized solid-state nudged elastic band method. , 2012, The Journal of chemical physics.

[22]  Graeme Henkelman,et al.  Paths to which the nudged elastic band converges , 2011, J. Comput. Chem..

[23]  C. Wolverton,et al.  First-principles energetics of hydrogen traps in α-Fe: Point defects , 2010 .

[24]  J. Neugebauer,et al.  Ab initio study on the solubility and kinetics of hydrogen in austenitic high Mn steels , 2010 .

[25]  H. Zandbergen,et al.  Structural, electronic, and magnetic properties of iron carbide Fe7C3 phases from first-principles theory , 2009 .

[26]  N. Medvedeva,et al.  Electronic structure, magnetic properties, and stability of the binary and ternary carbides (Fe,Cr)3C and (Fe,Cr)7C3 , 2009 .

[27]  A. Stukowski Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool , 2009 .

[28]  Fujio Izumi,et al.  VESTA: a three-dimensional visualization system for electronic and structural analysis , 2008 .

[29]  Chao Jiang First-principles study of structural, elastic, and electronic properties of chromium carbides , 2008 .

[30]  George Crabtree,et al.  The hydrogen economy , 2006, IEEE Engineering Management Review.

[31]  J. Paier,et al.  Screened hybrid density functionals applied to solids. , 2006, The Journal of chemical physics.

[32]  D. Eliezer,et al.  The hydrogen embrittlement of titanium-based alloys , 2005 .

[33]  M. Sugisaki,et al.  Observation of Hydrogen Distribution around Non-Metallic Inclusions in Steels with Tritium Microautoradiography , 2005 .

[34]  George F. Vander Voort,et al.  Metallography and Microstructures of Stainless Steels and Maraging Steels , 2004 .

[35]  E. Carter,et al.  Diffusion of interstitial hydrogen into and through bcc Fe from first principles , 2004 .

[36]  M. Nagumo Hydrogen related failure of steels – a new aspect , 2004 .

[37]  H. Wipf Solubility and diffusion of hydrogen in pure metals and alloys , 2001 .

[38]  G. Henkelman,et al.  Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points , 2000 .

[39]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[40]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[41]  A. Gross,et al.  Role of zero-point effects in catalytic reactions involving hydrogen , 1997, cond-mat/9702090.

[42]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[43]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[44]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[45]  E. Haller,et al.  Hydrogen interactions with defects in crystalline solids , 1992 .

[46]  G. Pressouyre Hydrogen traps, repellers, and obstacles in steel; Consequences on hydrogen diffusion, solubility, and embrittlement , 1983 .

[47]  P. Bowen,et al.  Transmission electron microscopic study of single crystals of Fe7C3 , 1983 .

[48]  P. Karen,et al.  Heptamanganese tricarbide Mn7C3 , 1983 .

[49]  A. Inoue,et al.  Carbide reactions (M3C→M7C3→M23C6→M6C) during tempering of rapidly solidified high carbon Cr-W and Cr-Mo steels , 1980 .

[50]  G. Pressouyre A classification of hydrogen traps in steel , 1979 .

[51]  H. Hänninen,et al.  Fractographic characteristics of a hydrogen-charged AISI 316 type austenitic stainless steel , 1979 .

[52]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .