Generating Design Suggestions under Tight Constraints with Gradient‐based Probabilistic Programming

We present a system for generating suggestions from highly‐constrained, continuous design spaces. We formulate suggestion as sampling from a probability distribution; constraints are represented as factors that concentrate probability mass around sub‐manifolds of the design space. These sampling problems are intractable using typical random walk MCMC techniques, so we adopt Hamiltonian Monte Carlo (HMC), a gradient‐based MCMC method. We implement HMC in a high‐performance probabilistic programming language, and we evaluate its ability to efficiently generate suggestions for two different, highly‐constrained example applications: vector art coloring and designing stable stacking structures.

[1]  Bradley P. Carlin,et al.  Markov Chain Monte Carlo in Practice: A Roundtable Discussion , 1998 .

[2]  Andrew Gelman,et al.  The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..

[3]  B. Speelpenning Compiling Fast Partial Derivatives of Functions Given by Algorithms , 1980 .

[4]  Peter Wonka,et al.  Procedural Design of Exterior Lighting for Buildings with Complex Constraints , 2014, ACM Trans. Graph..

[5]  Tirthankar Dasgupta,et al.  Optimal Offline Compensation of Shape Shrinkage for 3 D Printing Processes , 2013 .

[6]  Pat Hanrahan,et al.  Synthesizing open worlds with constraints using locally annealed reversible jump MCMC , 2012, ACM Trans. Graph..

[7]  Jessica K. Hodgins,et al.  Pixar Animation Studios , 2003 .

[8]  Jeffrey S. Rosenthal,et al.  Optimal Proposal Distributions and Adaptive MCMC , 2011 .

[9]  Hans-Peter Seidel,et al.  Exploring Shape Variations by 3D‐Model Decomposition and Part‐based Recombination , 2012, Comput. Graph. Forum.

[10]  Tirthankar Dasgupta,et al.  Optimal offline compensation of shape shrinkage for three-dimensional printing processes , 2015 .

[11]  Brian K. Guenter Efficient symbolic differentiation for graphics applications , 2007, ACM Trans. Graph..

[12]  Swarat Chaudhuri,et al.  Smooth interpretation , 2010, PLDI '10.

[13]  Maneesh Agrawala,et al.  Interactive furniture layout using interior design guidelines , 2011, ACM Trans. Graph..

[14]  Maneesh Agrawala,et al.  Interactive furniture layout using interior design guidelines , 2011, SIGGRAPH 2011.

[15]  Siddhartha S. Srinivasa,et al.  CHOMP: Covariant Hamiltonian optimization for motion planning , 2013, Int. J. Robotics Res..

[16]  Scott R. Klemmer,et al.  Early and Repeated Exposure to Examples Improves Creative Work , 2012, CogSci.

[17]  Jan Vitek,et al.  Terra: a multi-stage language for high-performance computing , 2013, PLDI.

[18]  A. Gelman,et al.  Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .

[19]  Takeo Igarashi,et al.  Guided exploration of physically valid shapes for furniture design , 2012, ACM Trans. Graph..

[20]  Radomír Mech,et al.  Metropolis procedural modeling , 2011, TOGS.

[21]  Daniel L. Schwartz,et al.  Parallel prototyping leads to better design results, more divergence, and increased self-efficacy , 2010, TCHI.

[22]  Steve Marschner,et al.  Manifold exploration , 2012, ACM Trans. Graph..

[23]  Helmut Pottmann,et al.  Shape space exploration of constrained meshes , 2011, ACM Trans. Graph..

[24]  S. Duane,et al.  Hybrid Monte Carlo , 1987 .

[25]  Daniel Cohen-Or,et al.  Fit and diverse , 2012, ACM Trans. Graph..

[26]  Noah D. Goodman,et al.  Nonstandard Interpretations of Probabilistic Programs for Efficient Inference , 2011, NIPS.

[27]  Frédo Durand,et al.  Procedural modeling of structurally-sound masonry buildings , 2009, ACM Trans. Graph..

[28]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[29]  Dong-Ming Yan,et al.  Generating and exploring good building layouts , 2013, ACM Trans. Graph..

[30]  Radford M. Neal MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.

[31]  Charles J. Geyer Computation for the Introduction to MCMC Chapter of Handbook of Markov Chain Monte Carlo , 2010 .

[32]  Sylvain Lefebvre,et al.  Make it stand , 2013, ACM Trans. Graph..

[33]  Hans-Peter Seidel,et al.  Material memex , 2012, ACM Trans. Graph..

[34]  Siddhartha Chaudhuri,et al.  A probabilistic model for component-based shape synthesis , 2012, ACM Trans. Graph..

[35]  Paul A. Beardsley,et al.  Design galleries: a general approach to setting parameters for computer graphics and animation , 1997, SIGGRAPH.

[36]  Pat Hanrahan,et al.  Probabilistic color-by-numbers , 2013, ACM Trans. Graph..

[37]  Aaron Hertzmann,et al.  Color compatibility from large datasets , 2011, ACM Trans. Graph..

[38]  Pat Hanrahan,et al.  Synthesis of tiled patterns using factor graphs , 2013, ACM Trans. Graph..

[39]  Raquel Urtasun,et al.  A Family of MCMC Methods on Implicitly Defined Manifolds , 2012, AISTATS.

[40]  Andreas Griewank,et al.  Automatic Differentiation of Algorithms: From Simulation to Optimization , 2000, Springer New York.

[41]  Pat Hanrahan,et al.  Example-based synthesis of 3D object arrangements , 2012, ACM Trans. Graph..

[42]  L. Ou,et al.  A colour harmony model for two-colour combinations , 2006 .

[43]  Joshua B. Tenenbaum,et al.  Church: a language for generative models , 2008, UAI.