Natural image sequences constrain dynamic receptive fields and imply a sparse code

In their natural environment, animals experience a complex and dynamic visual scenery. Under such natural stimulus conditions, neurons in the visual cortex employ a spatially and temporally sparse code. For the input scenario of natural still images, previous work demonstrated that unsupervised feature learning combined with the constraint of sparse coding can predict physiologically measured receptive fields of simple cells in the primary visual cortex. This convincingly indicated that the mammalian visual system is adapted to the natural spatial input statistics. Here, we extend this approach to the time domain in order to predict dynamic receptive fields that can account for both spatial and temporal sparse activation in biological neurons. We rely on temporal restricted Boltzmann machines and suggest a novel temporal autoencoding training procedure. When tested on a dynamic multi-variate benchmark dataset this method outperformed existing models of this class. Learning features on a large dataset of natural movies allowed us to model spatio-temporal receptive fields for single neurons. They resemble temporally smooth transformations of previously obtained static receptive fields and are thus consistent with existing theories. A neuronal spike response model demonstrates how the dynamic receptive field facilitates temporal and population sparseness. We discuss the potential mechanisms and benefits of a spatially and temporally sparse representation of natural visual input.

[1]  M. Brecht,et al.  Sparse and powerful cortical spikes , 2010, Current Opinion in Neurobiology.

[2]  Maurice J Chacron,et al.  Electroreceptor neuron dynamics shape information transmission , 2005, Nature Neuroscience.

[3]  William B. Levy,et al.  Energy Efficient Neural Codes , 1996, Neural Computation.

[4]  Johannes Schemmel,et al.  A comprehensive workflow for general-purpose neural modeling with highly configurable neuromorphic hardware systems , 2010, Biological Cybernetics.

[5]  P. Brown,et al.  Event-related beta desynchronization in human subthalamic nucleus correlates with motor performance. , 2004, Brain : a journal of neurology.

[6]  Richard A. Andersen,et al.  Latent variable models for neural data analysis , 1999 .

[7]  R. Menzel,et al.  Mushroom Body Output Neurons Encode Odor–Reward Associations , 2011, The Journal of Neuroscience.

[8]  N. C. Silver,et al.  Averaging Correlation Coefficients: Should Fishers z Transformation Be Used? , 1987 .

[9]  G. Laurent,et al.  Adaptive regulation of sparseness by feedforward inhibition , 2007, Nature Neuroscience.

[10]  A. Moran,et al.  Revealing neuronal functional organization through the relation between multi-scale oscillatory extracellular signals , 2010, Journal of Neuroscience Methods.

[11]  David M. Santucci,et al.  Learning to Control a Brain–Machine Interface for Reaching and Grasping by Primates , 2003, PLoS biology.

[12]  Randolf Menzel,et al.  Cellular Adaptation Accounts for the Sparse and Reliable Sensory Stimulus Representation , 2012, 1210.7165.

[13]  Terrence J. Sejnowski,et al.  Slow Feature Analysis: Unsupervised Learning of Invariances , 2002, Neural Computation.

[14]  Andrew Y. Ng,et al.  Unsupervised learning models of primary cortical receptive fields and receptive field plasticity , 2011, NIPS.

[15]  Terrence J. Sejnowski,et al.  The “independent components” of natural scenes are edge filters , 1997, Vision Research.

[16]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[17]  P. Lennie The Cost of Cortical Computation , 2003, Current Biology.

[18]  K. Martin,et al.  Functional Heterogeneity in Neighboring Neurons of Cat Primary Visual Cortex in Response to Both Artificial and Natural Stimuli , 2013, The Journal of Neuroscience.

[19]  Marc'Aurelio Ranzato,et al.  Building high-level features using large scale unsupervised learning , 2011, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[20]  Yoshua Bengio,et al.  Deep Learning of Representations: Looking Forward , 2013, SLSP.

[21]  Quoc V. Le,et al.  ICA with Reconstruction Cost for Efficient Overcomplete Feature Learning , 2011, NIPS.

[22]  Andreas Knoblauch,et al.  Pattern separation and synchronization in spiking associative memories and visual areas , 2001, Neural Networks.

[23]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[24]  A. Aertsen,et al.  Dynamic Encoding of Movement Direction in Motor Cortical Neurons , 2009, The Journal of Neuroscience.

[25]  Martin P. Nawrot,et al.  Parallel Processing via a Dual Olfactory Pathway in the Honeybee , 2013, The Journal of Neuroscience.

[26]  Jason Wolfe,et al.  Sparse temporal coding of elementary tactile features during active whisker sensation , 2009, Nature Neuroscience.

[27]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[28]  Andreas V. M. Herz,et al.  A Universal Model for Spike-Frequency Adaptation , 2003, Neural Computation.

[29]  Martin P. Nawrot,et al.  Analysis and Interpretation of Interval and Count Variability in Neural Spike Trains , 2010 .

[30]  Nicholas G. Hatsopoulos,et al.  Brain-machine interface: Instant neural control of a movement signal , 2002, Nature.

[31]  Peter Brown,et al.  Basal ganglia local field potential activity: Character and functional significance in the human , 2005, Clinical Neurophysiology.

[32]  Klaus-Robert Müller,et al.  The non-invasive Berlin Brain–Computer Interface: Fast acquisition of effective performance in untrained subjects , 2007, NeuroImage.

[33]  Glenn C. Turner,et al.  Oscillations and Sparsening of Odor Representations in the Mushroom Body , 2002, Science.

[34]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[35]  R. Eckhorn,et al.  Coherent oscillations: A mechanism of feature linking in the visual cortex? , 1988, Biological Cybernetics.

[36]  Shih-Cheng Yen,et al.  Natural Movies Evoke Spike Trains with Low Spike Time Variability in Cat Primary Visual Cortex , 2011, The Journal of Neuroscience.

[37]  Shigeru Shinomoto,et al.  A Method for Selecting the Bin Size of a Time Histogram , 2007, Neural Computation.

[38]  Farzad Farkhooi,et al.  Adaptation reduces variability of the neuronal population code. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  A. Lozano,et al.  Bilateral pallidal stimulation in cervical dystonia: blinded evidence of benefit beyond 5 years. , 2013, Brain : a journal of neurology.

[40]  Bruno A Olshausen,et al.  Sparse coding of sensory inputs , 2004, Current Opinion in Neurobiology.

[41]  C. Zetzsche,et al.  Nonlinear and higher-order approaches to the encoding of natural scenes , 2005, Network.

[42]  M. Nawrot Dynamics of sensory processing in the dual olfactory pathway of the honeybee , 2012, Apidologie.

[43]  Pascal Vincent,et al.  Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion , 2010, J. Mach. Learn. Res..

[44]  G. Laurent,et al.  Conditional modulation of spike-timing-dependent plasticity for olfactory learning , 2012, Nature.

[45]  Ramón Huerta,et al.  Fast and Robust Learning by Reinforcement Signals: Explorations in the Insect Brain , 2009, Neural Computation.

[46]  Geoffrey E. Hinton,et al.  Learning Multilevel Distributed Representations for High-Dimensional Sequences , 2007, AISTATS.

[47]  A M Graybiel,et al.  The basal ganglia and adaptive motor control. , 1994, Science.

[48]  S. Fahn The varied clinical expressions of dystonia. , 1984, Neurologic clinics.

[49]  B. Raman,et al.  Sparse odor representation and olfactory learning , 2008, Nature Neuroscience.

[50]  Tom Heskes,et al.  Neural Decoding with Hierarchical Generative Models , 2010, Neural Computation.

[51]  Fernando Pérez,et al.  Python: An Ecosystem for Scientific Computing , 2011, Computing in Science & Engineering.

[52]  Stefan Rotter,et al.  Measurement of variability dynamics in cortical spike trains , 2008, Journal of Neuroscience Methods.

[53]  John T. Gale,et al.  Subthalamic nucleus discharge patterns during movement in the normal monkey and Parkinsonian patient , 2009, Brain Research.

[54]  Honglak Lee,et al.  Unsupervised feature learning for audio classification using convolutional deep belief networks , 2009, NIPS.

[55]  Johannes Schemmel,et al.  Six Networks on a Universal Neuromorphic Computing Substrate , 2012, Front. Neurosci..

[56]  Ralf S. Klessen,et al.  American Institute of Physics Conference Series , 2010 .

[57]  John P. Donoghue,et al.  Bridging the Brain to the World: A Perspective on Neural Interface Systems , 2008, Neuron.

[58]  R. Reid,et al.  Precise Firing Events Are Conserved across Neurons , 2002, The Journal of Neuroscience.

[59]  Stefan Haufe,et al.  SPoC: A novel framework for relating the amplitude of neuronal oscillations to behaviorally relevant parameters , 2014, NeuroImage.

[60]  Tobi Delbrück,et al.  Silicon retina with correlation-based, velocity-tuned pixels , 1993, IEEE Trans. Neural Networks.

[61]  G. P. Moore,et al.  Neuronal spike trains and stochastic point processes. I. The single spike train. , 1967, Biophysical journal.

[62]  Tom M. Mitchell,et al.  Machine learning classifiers and fMRI: A tutorial overview , 2009, NeuroImage.

[63]  Tapani Raiko,et al.  Improved Learning of Gaussian-Bernoulli Restricted Boltzmann Machines , 2011, ICANN.

[64]  Yoshua Bengio,et al.  Greedy Layer-Wise Training of Deep Networks , 2006, NIPS.

[65]  Nitish Srivastava,et al.  Improving neural networks by preventing co-adaptation of feature detectors , 2012, ArXiv.

[66]  A P Georgopoulos,et al.  On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[67]  Sonja Grün,et al.  Serial interval statistics of spontaneous activity in cortical neurons in vivo and in vitro , 2007, Neurocomputing.

[68]  D. Fitzpatrick,et al.  Orientation Selectivity and the Arrangement of Horizontal Connections in Tree Shrew Striate Cortex , 1997, The Journal of Neuroscience.

[69]  Laurenz Wiskott,et al.  Slow feature analysis yields a rich repertoire of complex cell properties. , 2005, Journal of vision.

[70]  A. Savitzky,et al.  Smoothing and Differentiation of Data by Simplified Least Squares Procedures. , 1964 .

[71]  J. Stoyanov The Oxford Handbook of Nonlinear Filtering , 2012 .

[72]  M. Kringelbach,et al.  Translational principles of deep brain stimulation , 2007, Nature Reviews Neuroscience.

[73]  D. Ruderman,et al.  Independent component analysis of natural image sequences yields spatio-temporal filters similar to simple cells in primary visual cortex , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[74]  Travis E. Oliphant,et al.  Python for Scientific Computing , 2007, Computing in Science & Engineering.

[75]  C. Gray,et al.  Heterogeneity in the responses of adjacent neurons to natural stimuli in cat striate cortex. , 2007, Journal of neurophysiology.

[76]  Yves Chauvin,et al.  Backpropagation: theory, architectures, and applications , 1995 .

[77]  Matthew R. Krause,et al.  Synaptic and Network Mechanisms of Sparse and Reliable Visual Cortical Activity during Nonclassical Receptive Field Stimulation , 2010, Neuron.

[78]  R C Reid,et al.  Efficient Coding of Natural Scenes in the Lateral Geniculate Nucleus: Experimental Test of a Computational Theory , 1996, The Journal of Neuroscience.

[79]  Eran Stark,et al.  Predicting Movement from Multiunit Activity , 2007, The Journal of Neuroscience.

[80]  Nitish Srivastava,et al.  Multimodal learning with deep Boltzmann machines , 2012, J. Mach. Learn. Res..

[81]  M. Nawrot,et al.  Serial correlation in neural spike trains: experimental evidence, stochastic modeling, and single neuron variability. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[82]  Andreas G. Andreou,et al.  A Contrast Sensitive Silicon Retina with Reciprocal Synapses , 1991, NIPS.

[83]  W. Singer,et al.  Synchronization of neuronal responses in primary visual cortex of monkeys viewing natural images. , 2008, Journal of neurophysiology.

[84]  Misha Denil,et al.  Predicting Parameters in Deep Learning , 2014 .

[85]  A. Hodgkin,et al.  Propagation of electrical signals along giant nerve fibres , 1952, Proceedings of the Royal Society of London. Series B - Biological Sciences.

[86]  D. Fitzpatrick,et al.  Unequal representation of cardinal and oblique contours in ferret visual cortex. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[87]  Bahadir Kasap,et al.  Improving odor classification through self-organized lateral inhibition in a spiking olfaction-inspired network , 2013, 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER).

[88]  S. Laughlin Energy as a constraint on the coding and processing of sensory information , 2001, Current Opinion in Neurobiology.

[89]  Tara N. Sainath,et al.  Deep Belief Networks using discriminative features for phone recognition , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[90]  L. Maler,et al.  Negative Interspike Interval Correlations Increase the Neuronal Capacity for Encoding Time-Dependent Stimuli , 2001, The Journal of Neuroscience.

[91]  Laurenz Wiskott,et al.  Slowness and Sparseness Lead to Place, Head-Direction, and Spatial-View Cells , 2007, PLoS Comput. Biol..

[92]  Cordelia Schmid,et al.  Actions in context , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[93]  Miguel Á. Carreira-Perpiñán,et al.  On Contrastive Divergence Learning , 2005, AISTATS.

[94]  Yoshua Bengio,et al.  Classification using discriminative restricted Boltzmann machines , 2008, ICML '08.

[95]  Dinggang Shen,et al.  Unsupervised Deep Learning for Hippocampus Segmentation in 7.0 Tesla MR Images , 2013, MLMI.

[96]  Eero P. Simoncelli,et al.  Natural image statistics and neural representation. , 2001, Annual review of neuroscience.

[97]  Yoshua Bengio,et al.  Convolutional networks for images, speech, and time series , 1998 .

[98]  Chen Chen,et al.  Precise Feature Based Time Scales and Frequency Decorrelation Lead to a Sparse Auditory Code , 2012, The Journal of Neuroscience.

[99]  Lawrence D. Jackel,et al.  Backpropagation Applied to Handwritten Zip Code Recognition , 1989, Neural Computation.

[100]  Ronald N. Bracewell,et al.  The Fourier Transform and Its Applications , 1966 .

[101]  T. Davenport,et al.  Data scientist: the sexiest job of the 21st century. , 2012, Harvard business review.

[102]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[103]  Geoffrey E. Hinton,et al.  The Recurrent Temporal Restricted Boltzmann Machine , 2008, NIPS.

[104]  Brian E. Granger,et al.  IPython: A System for Interactive Scientific Computing , 2007, Computing in Science & Engineering.

[105]  Peter Brown,et al.  Scaling of Movement Is Related to Pallidal γ Oscillations in Patients with Dystonia , 2012, The Journal of Neuroscience.

[106]  Robert A. A. Campbell,et al.  Cellular-Resolution Population Imaging Reveals Robust Sparse Coding in the Drosophila Mushroom Body , 2011, The Journal of Neuroscience.

[107]  M R DeLong,et al.  The primate subthalamic nucleus. III. Changes in motor behavior and neuronal activity in the internal pallidum induced by subthalamic inactivation in the MPTP model of parkinsonism. , 1994, Journal of neurophysiology.

[108]  Wes McKinney,et al.  Data Structures for Statistical Computing in Python , 2010, SciPy.

[109]  Pamela Reinagel How do visual neurons respond in the real world? , 2001, Current Opinion in Neurobiology.

[110]  Gang Wang,et al.  Difference in the representation of cardinal and oblique contours in cat visual cortex , 2003, Neuroscience Letters.

[111]  Amy Loutfi,et al.  A review of unsupervised feature learning and deep learning for time-series modeling , 2014, Pattern Recognit. Lett..

[112]  Geoffrey E. Hinton A Practical Guide to Training Restricted Boltzmann Machines , 2012, Neural Networks: Tricks of the Trade.

[113]  T. Delbruck,et al.  > Replace This Line with Your Paper Identification Number (double-click Here to Edit) < 1 , 2022 .

[114]  Randolf Menzel,et al.  Rapid odor processing in the honeybee antennal lobe network , 2009 .

[115]  Gilles Laurent,et al.  A Simple Connectivity Scheme for Sparse Coding in an Olfactory System , 2007, The Journal of Neuroscience.

[116]  Vince D. Calhoun,et al.  Deep learning for neuroimaging: a validation study , 2013, Front. Neurosci..

[117]  Georg Heigold,et al.  An empirical study of learning rates in deep neural networks for speech recognition , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[118]  C. Hausler,et al.  A spiking neuron classifier network with a deep architecture inspired by the olfactory system of the honeybee , 2011, 2011 5th International IEEE/EMBS Conference on Neural Engineering.

[119]  A. Aertsen,et al.  Spike synchronization and rate modulation differentially involved in motor cortical function. , 1997, Science.

[120]  Günther Deuschl,et al.  Pallidal deep brain stimulation in patients with primary generalised or segmental dystonia: 5-year follow-up of a randomised trial , 2012, The Lancet Neurology.

[121]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[122]  G. Laurent,et al.  Normalization for Sparse Encoding of Odors by a Wide-Field Interneuron , 2011, Science.

[123]  Spyros Makridakis,et al.  The M3-Competition: results, conclusions and implications , 2000 .

[124]  C. Poo,et al.  Odor representations in olfactory cortex , 2010 .

[125]  Graham W. Taylor Composable, Distributed-state Models for High-dimensional Time Series , 2009 .

[126]  Yann LeCun,et al.  Optimal Brain Damage , 1989, NIPS.

[127]  L. Abbott,et al.  Random Convergence of Olfactory Inputs in the Drosophila Mushroom Body , 2013, Nature.

[128]  Ad Aertsen,et al.  FIND - A unified framework for neural data analysis , 2008, Neural Networks.

[129]  Henry C. Tuckwell,et al.  Introduction to theoretical neurobiology , 1988 .

[130]  H. Ritter,et al.  A principle for the formation of the spatial structure of cortical feature maps. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[131]  F. Mechler,et al.  Independent and Redundant Information in Nearby Cortical Neurons , 2001, Science.

[132]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[133]  Stefan Rotter,et al.  Single-trial estimation of neuronal firing rates: From single-neuron spike trains to population activity , 1999, Journal of Neuroscience Methods.

[134]  Michael Schmuker,et al.  A neuromorphic network for generic multivariate data classification , 2014, Proceedings of the National Academy of Sciences.

[135]  W S McCulloch,et al.  A logical calculus of the ideas immanent in nervous activity , 1990, The Philosophy of Artificial Intelligence.

[136]  Honglak Lee,et al.  Sparse deep belief net model for visual area V2 , 2007, NIPS.

[137]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[138]  Stephen D. Van Hooser Similarity and Diversity in Visual Cortex: Is There a Unifying Theory of Cortical Computation? , 2007, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[139]  M. Delong,et al.  Activity of pallidal neurons during movement. , 1971, Journal of neurophysiology.

[140]  J. Isaacson,et al.  Odor Representations in Olfactory Cortex: “Sparse” Coding, Global Inhibition, and Oscillations , 2009, Neuron.

[141]  Bruno A. Olshausen,et al.  Learning Intermediate-Level Representations of Form and Motion from Natural Movies , 2012, Neural Computation.

[142]  Bruno A. Olshausen,et al.  Learning Transformational Invariants from Natural Movies , 2008, NIPS.

[143]  Ramon Huerta,et al.  Learning pattern recognition and decision making in the insect brain , 2013 .

[144]  Tim Gollisch,et al.  Modeling Single-Neuron Dynamics and Computations: A Balance of Detail and Abstraction , 2006, Science.

[145]  J. Austin Associative memory , 1987 .

[146]  M. Gelabert-González,et al.  [Deep brain stimulation in Parkinson's disease]. , 2013, Revista de neurologia.

[147]  J. Gallant,et al.  Reconstructing Visual Experiences from Brain Activity Evoked by Natural Movies , 2011, Current Biology.

[148]  T. Hromádka,et al.  Sparse Representation of Sounds in the Unanesthetized Auditory Cortex , 2008, PLoS biology.

[149]  R Eckhorn,et al.  Inhibition of sustained gamma oscillations (35-80 Hz) by fast transient responses in cat visual cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[150]  Gilles Laurent,et al.  Dynamics of olfactory bulb input and output activity during odor stimulation in zebrafish. , 2004, Journal of neurophysiology.

[151]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[152]  D. Tolhurst,et al.  Characterizing the sparseness of neural codes , 2001, Network.

[153]  Geoffrey E. Hinton,et al.  Modeling Human Motion Using Binary Latent Variables , 2006, NIPS.

[154]  A. Graybiel The basal ganglia: learning new tricks and loving it , 2005, Current Opinion in Neurobiology.

[155]  G. E. Alexander,et al.  Parallel organization of functionally segregated circuits linking basal ganglia and cortex. , 1986, Annual review of neuroscience.

[156]  Pascal Vincent,et al.  Generalized Denoising Auto-Encoders as Generative Models , 2013, NIPS.

[157]  B. Willmore,et al.  Sparse coding in striate and extrastriate visual cortex. , 2011, Journal of neurophysiology.

[158]  N. Accornero,et al.  Performance of sequential arm movements with and without advance knowledge of motor pathways in Parkinson's disease , 1997, Movement disorders : official journal of the Movement Disorder Society.

[159]  K. Boahen Neuromorphic Microchips. , 2005, Scientific American.

[160]  Ramón Huerta,et al.  Learning Classification in the Olfactory System of Insects , 2004, Neural Computation.

[161]  Gilles Laurent,et al.  Transformation of Olfactory Representations in the Drosophila Antennal Lobe , 2004, Science.

[162]  Nicole L. Carlson,et al.  Sparse Codes for Speech Predict Spectrotemporal Receptive Fields in the Inferior Colliculus , 2012, PLoS Comput. Biol..

[163]  Yoshua Bengio,et al.  Why Does Unsupervised Pre-training Help Deep Learning? , 2010, AISTATS.

[164]  J L Gallant,et al.  Sparse coding and decorrelation in primary visual cortex during natural vision. , 2000, Science.