Feature attention evokes task-specific pattern selectivity in V4 neurons

A hallmark of visual cortical neurons is their selectivity for stimulus pattern features, such as color, orientation, or shape. In most cases this feature selectivity is hard-wired, with selectivity manifest from the beginning of the response. Here we show that when a task requires that a monkey distinguish between patterns, V4 develops a selectivity for the sought-after pattern, which it does not manifest in a task that does not require the monkey to distinguish between patterns. When a monkey looks for a target object among an array of distractors, V4 neurons become selective for the target ∼50 ms after the visual latency independent of the impending saccade direction. However, when the monkey has to only make a saccade to the spatial location of the same objects without discriminating their pattern, V4 neurons do not distinguish the search target from the distractors. This selectivity for stimulus pattern develops roughly 40 ms after the same neurons’ selectivity for basic pattern features like orientation or color. We suggest that this late-developing selectivity is related to the phenomenon of feature attention and may contribute to the mechanisms by which the brain finds the target in visual search.

[1]  Pieter R. Roelfsema,et al.  Object-based attention in the primary visual cortex of the macaque monkey , 1998, Nature.

[2]  J. Gallant,et al.  Time Course of Attention Reveals Different Mechanisms for Spatial and Feature-Based Attention in Area V4 , 2005, Neuron.

[3]  B. C. Motter,et al.  Neural correlates of feature selective memory and pop-out in extrastriate area V4 , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[4]  B. C. Motter Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. , 1993, Journal of neurophysiology.

[5]  Katherine M. Armstrong,et al.  Selective gating of visual signals by microstimulation of frontal cortex , 2003, Nature.

[6]  Jude F. Mitchell,et al.  Spatial Attention Modulates Center-Surround Interactions in Macaque Visual Area V4 , 2009, Neuron.

[7]  Robert Desimone,et al.  Parallel and Serial Neural Mechanisms for Visual Search in Macaque Area V4 , 2005, Science.

[8]  John H. R. Maunsell,et al.  Effects of spatial attention on contrast response functions in macaque area V4. , 2006, Journal of neurophysiology.

[9]  J. Gallant,et al.  Spectral receptive field properties explain shape selectivity in area V4. , 2006, Journal of neurophysiology.

[10]  M. Goldberg,et al.  Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area. , 1996, Journal of neurophysiology.

[11]  R. Desimone,et al.  Attention Increases Sensitivity of V4 Neurons , 2000, Neuron.

[12]  S. Hochstein,et al.  Task difficulty and the specificity of perceptual learning , 1997, Nature.

[13]  John Duncan,et al.  A neural basis for visual search in inferior temporal cortex , 1993, Nature.

[14]  E. Wagenmakers,et al.  Erroneous analyses of interactions in neuroscience: a problem of significance , 2011, Nature Neuroscience.

[15]  M. Goldberg,et al.  Activity in the Lateral Intraparietal Area Predicts the Goal and Latency of Saccades in a Free-Viewing Visual Search Task , 2006, The Journal of Neuroscience.

[16]  C. Connor,et al.  Responses to contour features in macaque area V4. , 1999, Journal of neurophysiology.

[17]  M. Goldberg,et al.  The time course of perisaccadic receptive field shifts in the lateral intraparietal area of the monkey. , 2003, Journal of neurophysiology.

[18]  Richard A. Feinberg,et al.  A Brief History of the Mall , 1991 .

[19]  B. Richmond,et al.  Implantation of magnetic search coils for measurement of eye position: An improved method , 1980, Vision Research.

[20]  A. Parker,et al.  Range and mechanism of encoding of horizontal disparity in macaque V1. , 2002, Journal of neurophysiology.

[21]  Robert Desimone,et al.  Cortical connections of area V4 in the macaque. , 2000, Cerebral cortex.

[22]  E. J. Tehovnik,et al.  Eye Movements Modulate Visual Receptive Fields of V4 Neurons , 2001, Neuron.

[23]  T Moore,et al.  Shape representations and visual guidance of saccadic eye movements. , 1999, Science.

[24]  J. Movshon,et al.  Dynamics of Suppression in Macaque Primary Visual Cortex , 2006, The Journal of Neuroscience.

[25]  Leslie G. Ungerleider,et al.  Contour, color and shape analysis beyond the striate cortex , 1985, Vision Research.

[26]  P. H. Schiller,et al.  State dependent activity in monkey visual cortex , 2004, Experimental Brain Research.

[27]  Leslie G. Ungerleider,et al.  Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[28]  M E Goldberg,et al.  Participation of prefrontal neurons in the preparation of visually guided eye movements in the rhesus monkey. , 1989, Journal of neurophysiology.

[29]  R. Desimone,et al.  Spectral properties of V4 neurons in the macaque , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  J. Gallant,et al.  Attention to Stimulus Features Shifts Spectral Tuning of V4 Neurons during Natural Vision , 2008, Neuron.

[31]  J Duncan,et al.  Responses of neurons in macaque area V4 during memory-guided visual search. , 2001, Cerebral cortex.

[32]  C. Gilbert,et al.  Perceptual learning and top-down influences in primary visual cortex , 2004, Nature Neuroscience.

[33]  K A Martin,et al.  A brief history of the "feature detector". , 1994, Cerebral cortex.

[34]  Bevil R. Conway,et al.  Toward a Unified Theory of Visual Area V4 , 2012, Neuron.

[35]  H. Deubel,et al.  Saccade target selection and object recognition: Evidence for a common attentional mechanism , 1996, Vision Research.

[36]  R. Desimone,et al.  Interacting Roles of Attention and Visual Salience in V4 , 2003, Neuron.

[37]  R. Desimone,et al.  Attention Increases Sensitivity of V4 Neurons , 2000, Neuron.

[38]  M. Goldberg,et al.  Attention, intention, and priority in the parietal lobe. , 2010, Annual review of neuroscience.

[39]  John H. R. Maunsell,et al.  Attention to both space and feature modulates neuronal responses in macaque area V4. , 2000, Journal of neurophysiology.

[40]  Robert Desimone,et al.  Feature-Based Attention in the Frontal Eye Field and Area V4 during Visual Search , 2011, Neuron.

[41]  Anna E. Ipata,et al.  Neurons in the lateral intraparietal area create a priority map by the combination of disparate signals , 2008, Experimental Brain Research.

[42]  D. V. van Essen,et al.  Responses in area V4 depend on the spatial relationship between stimulus and attention. , 1996, Journal of neurophysiology.

[43]  Carrie J. McAdams,et al.  Effects of Attention on the Reliability of Individual Neurons in Monkey Visual Cortex , 1999, Neuron.

[44]  M. Goldberg,et al.  A Rapid and Precise On-Response in Posterior Parietal Cortex , 2004, The Journal of Neuroscience.

[45]  R. Wurtz,et al.  Activity of superior colliculus in behaving monkey. II. Effect of attention on neuronal responses. , 1972, Journal of neurophysiology.

[46]  M. Goldberg,et al.  Neuronal Activity in the Lateral Intraparietal Area and Spatial Attention , 2003, Science.

[47]  Carrie J. McAdams,et al.  Effects of Attention on Orientation-Tuning Functions of Single Neurons in Macaque Cortical Area V4 , 1999, The Journal of Neuroscience.

[48]  H. Spitzer,et al.  Increased attention enhances both behavioral and neuronal performance. , 1988, Science.