Fairness in Machine Learning: A Survey

As Machine Learning technologies become increasingly used in contexts that affect citizens, companies as well as researchers need to be confident that their application of these methods will not have unexpected social implications, such as bias towards gender, ethnicity, and/or people with disabilities. There is significant literature on approaches to mitigate bias and promote fairness, yet the area is complex and hard to penetrate for newcomers to the domain. This article seeks to provide an overview of the different schools of thought and approaches to mitigating (social) biases and increase fairness in the Machine Learning literature. It organises approaches into the widely accepted framework of pre-processing, in-processing, and post-processing methods, subcategorizing into a further 11 method areas. Although much of the literature emphasizes binary classification, a discussion of fairness in regression, recommender systems, unsupervised learning, and natural language processing is also provided along with a selection of currently available open source libraries. The article concludes by summarising open challenges articulated as four dilemmas for fairness research.

[1]  Avi Feller,et al.  Algorithmic Decision Making and the Cost of Fairness , 2017, KDD.

[2]  Maria Soledad Pera,et al.  All The Cool Kids, How Do They Fit In?: Popularity and Demographic Biases in Recommender Evaluation and Effectiveness , 2018, FAT.

[3]  Harald Steck,et al.  Calibrated recommendations , 2018, RecSys.

[4]  Yang Liu,et al.  Calibrated Fairness in Bandits , 2017, ArXiv.

[5]  Suresh Venkatasubramanian,et al.  Runaway Feedback Loops in Predictive Policing , 2017, FAT.

[6]  Joichi Ito,et al.  Interventions over Predictions: Reframing the Ethical Debate for Actuarial Risk Assessment , 2017, FAT.

[7]  Amos J. Storkey,et al.  Censoring Representations with an Adversary , 2015, ICLR.

[8]  Benjamin Fish,et al.  A Confidence-Based Approach for Balancing Fairness and Accuracy , 2016, SDM.

[9]  Gregory Piatetsky-Shapiro,et al.  The KDD process for extracting useful knowledge from volumes of data , 1996, CACM.

[10]  Maya R. Gupta,et al.  Satisfying Real-world Goals with Dataset Constraints , 2016, NIPS.

[11]  Alex Pentland,et al.  Fair, Transparent, and Accountable Algorithmic Decision-making Processes , 2017, Philosophy & Technology.

[12]  R. Motwani,et al.  Efficient Algorithms for Masking and Finding Quasi-Identifiers , 2007 .

[13]  Miroslav Dudík,et al.  Fair Regression: Quantitative Definitions and Reduction-based Algorithms , 2019, ICML.

[14]  Krishna P. Gummadi,et al.  Human Perceptions of Fairness in Algorithmic Decision Making: A Case Study of Criminal Risk Prediction , 2018, WWW.

[15]  Alexander Peysakhovich,et al.  Fair Division Without Disparate Impact , 2019, ArXiv.

[16]  Reuben Binns,et al.  Fairness in Machine Learning: Lessons from Political Philosophy , 2017, FAT.

[17]  Andrew Guthrie Ferguson,et al.  Big Data and Predictive Reasonable Suspicion , 2014 .

[18]  William L. Oliver,et al.  The Emergence of Machine Learning Techniques in Criminology , 2013 .

[19]  Alex Pentland,et al.  Active Fairness in Algorithmic Decision Making , 2018, AIES.

[20]  Silvia Chiappa,et al.  Path-Specific Counterfactual Fairness , 2018, AAAI.

[21]  Jean-Michel Loubes,et al.  Obtaining Fairness using Optimal Transport Theory , 2018, ICML.

[22]  Franco Turini,et al.  Discrimination-aware data mining , 2008, KDD.

[23]  Zoubin Ghahramani,et al.  One-Network Adversarial Fairness , 2019, AAAI.

[24]  Ed H. Chi,et al.  Fairness in Recommendation Ranking through Pairwise Comparisons , 2019, KDD.

[25]  Michael Veale,et al.  Fairer machine learning in the real world: Mitigating discrimination without collecting sensitive data , 2017, Big Data Soc..

[26]  Panagiotis Papapetrou,et al.  A peek into the black box: exploring classifiers by randomization , 2014, Data Mining and Knowledge Discovery.

[27]  T. Cleary TEST BIAS: PREDICTION OF GRADES OF NEGRO AND WHITE STUDENTS IN INTEGRATED COLLEGES , 1968 .

[28]  Harikrishna Narasimhan,et al.  Learning with Complex Loss Functions and Constraints , 2018, AISTATS.

[29]  Yehuda Lindell,et al.  Privacy Preserving Data Mining , 2000, Journal of Cryptology.

[30]  Neil D. Lawrence,et al.  Dataset Shift in Machine Learning , 2009 .

[31]  Cynthia Rudin,et al.  Interpretable classification models for recidivism prediction , 2015, 1503.07810.

[32]  Aws Albarghouthi,et al.  FairSquare: probabilistic verification of program fairness , 2017, Proc. ACM Program. Lang..

[33]  Kamesh Munagala,et al.  Proportionally Fair Clustering , 2019, ICML.

[34]  Ben Green,et al.  Algorithmic realism: expanding the boundaries of algorithmic thought , 2020, FAT*.

[35]  Dan Suciu,et al.  Capuchin: Causal Database Repair for Algorithmic Fairness , 2019, ArXiv.

[36]  Seth Neel,et al.  Fair Algorithms for Infinite and Contextual Bandits , 2016, 1610.09559.

[37]  Suresh Venkatasubramanian,et al.  A comparative study of fairness-enhancing interventions in machine learning , 2018, FAT.

[38]  Yair Zick,et al.  Algorithmic Transparency via Quantitative Input Influence: Theory and Experiments with Learning Systems , 2016, 2016 IEEE Symposium on Security and Privacy (SP).

[39]  Adish Singla,et al.  Enhancing the Accuracy and Fairness of Human Decision Making , 2018, NeurIPS.

[40]  Ben Green Risk Assessments : A Precarious Approach for Criminal Justice Reform , 2018 .

[41]  Alexander Rich,et al.  Lessons for artificial intelligence from the study of natural stupidity , 2019, Nature Machine Intelligence.

[42]  Nisheeth K. Vishnoi,et al.  Classification with Fairness Constraints: A Meta-Algorithm with Provable Guarantees , 2018, FAT.

[43]  Zhe Zhao,et al.  Data Decisions and Theoretical Implications when Adversarially Learning Fair Representations , 2017, ArXiv.

[44]  David Sontag,et al.  Why Is My Classifier Discriminatory? , 2018, NeurIPS.

[45]  T. Poggio,et al.  STABILITY RESULTS IN LEARNING THEORY , 2005 .

[46]  Latanya Sweeney,et al.  k-Anonymity: A Model for Protecting Privacy , 2002, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[47]  Jon M. Kleinberg,et al.  On Fairness and Calibration , 2017, NIPS.

[48]  Brendan T. O'Connor,et al.  Racial Disparity in Natural Language Processing: A Case Study of Social Media African-American English , 2017, ArXiv.

[49]  Pascale Fung,et al.  Reducing Gender Bias in Abusive Language Detection , 2018, EMNLP.

[50]  Jun Sakuma,et al.  Fairness-Aware Classifier with Prejudice Remover Regularizer , 2012, ECML/PKDD.

[51]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[52]  André Elisseeff,et al.  Stability and Generalization , 2002, J. Mach. Learn. Res..

[53]  Aditya Krishna Menon,et al.  The cost of fairness in classification , 2017, ArXiv.

[54]  Adam Tauman Kalai,et al.  Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings , 2016, NIPS.

[55]  Jure Leskovec,et al.  The Selective Labels Problem: Evaluating Algorithmic Predictions in the Presence of Unobservables , 2017, KDD.

[56]  Krzysztof Onak,et al.  Scalable Fair Clustering , 2019, ICML.

[57]  Indre Zliobaite,et al.  On the relation between accuracy and fairness in binary classification , 2015, ArXiv.

[58]  Luca Oneto,et al.  Taking Advantage of Multitask Learning for Fair Classification , 2018, AIES.

[59]  Xintao Wu,et al.  Achieving Causal Fairness through Generative Adversarial Networks , 2019, IJCAI.

[60]  David C. Parkes,et al.  Fairness without Harm: Decoupled Classifiers with Preference Guarantees , 2019, ICML.

[61]  Christian Haas,et al.  The Price of Fairness - A Framework to Explore Trade-Offs in Algorithmic Fairness , 2019, International Conference on Interaction Sciences.

[62]  AzureML Team,et al.  AzureML: Anatomy of a machine learning service , 2016, PAPIs.

[63]  Partha Niyogi,et al.  Almost-everywhere Algorithmic Stability and Generalization Error , 2002, UAI.

[64]  Michael D. Ekstrand,et al.  Exploring author gender in book rating and recommendation , 2018, User Modeling and User-Adapted Interaction.

[65]  Stan Matwin,et al.  Privacy-aware filter-based feature selection , 2014, 2014 IEEE International Conference on Big Data (Big Data).

[66]  Andrew D. Selbst,et al.  Big Data's Disparate Impact , 2016 .

[67]  Julia Stoyanovich,et al.  Measuring Fairness in Ranked Outputs , 2016, SSDBM.

[68]  Toon Calders,et al.  Controlling Attribute Effect in Linear Regression , 2013, 2013 IEEE 13th International Conference on Data Mining.

[69]  N. Cole,et al.  Utilities and the Issue of Fairness in a Decision Theoretic Model for Selection. , 1976 .

[70]  Maxim Raginsky,et al.  Information-theoretic analysis of stability and bias of learning algorithms , 2016, 2016 IEEE Information Theory Workshop (ITW).

[71]  Jenna Burrell,et al.  How the machine ‘thinks’: Understanding opacity in machine learning algorithms , 2016 .

[72]  R. Berk Accuracy and Fairness for Juvenile Justice Risk Assessments , 2019, Journal of Empirical Legal Studies.

[73]  Peter Kairouz,et al.  Censored and Fair Universal Representations using Generative Adversarial Models , 2019 .

[74]  Gilles R. Ducharme,et al.  Computational Statistics and Data Analysis a Similarity Measure to Assess the Stability of Classification Trees , 2022 .

[75]  Kush R. Varshney,et al.  Fairness GAN , 2018, IBM Journal of Research and Development.

[76]  Ofir Nachum,et al.  Identifying and Correcting Label Bias in Machine Learning , 2019, AISTATS.

[77]  Seth Neel,et al.  Meritocratic Fairness for Infinite and Contextual Bandits , 2018, AIES.

[78]  Blake Lemoine,et al.  Mitigating Unwanted Biases with Adversarial Learning , 2018, AIES.

[79]  Jure Leskovec,et al.  Human Decisions and Machine Predictions , 2017, The quarterly journal of economics.

[80]  Maya R. Gupta,et al.  Optimization with Non-Differentiable Constraints with Applications to Fairness, Recall, Churn, and Other Goals , 2018, J. Mach. Learn. Res..

[81]  Matt J. Kusner,et al.  Causal Interventions for Fairness , 2018, ArXiv.

[82]  Anca D. Dragan,et al.  The Social Cost of Strategic Classification , 2018, FAT.

[83]  James Y. Zou,et al.  Multiaccuracy: Black-Box Post-Processing for Fairness in Classification , 2018, AIES.

[84]  Franco Turini,et al.  k-NN as an implementation of situation testing for discrimination discovery and prevention , 2011, KDD.

[85]  Meike Zehlike,et al.  Matching code and law: achieving algorithmic fairness with optimal transport , 2019, Data Mining and Knowledge Discovery.

[86]  K. Crawford,et al.  Where are human subjects in Big Data research? The emerging ethics divide , 2016, Big Data Soc..

[87]  Miriam A. Cherry,et al.  The Law and Policy of People Analytics , 2016 .

[88]  M. Kearns,et al.  Fairness in Criminal Justice Risk Assessments: The State of the Art , 2017, Sociological Methods & Research.

[89]  Anne Marie Piper,et al.  Addressing Age-Related Bias in Sentiment Analysis , 2018, CHI.

[90]  Roxana Geambasu,et al.  FairTest: Discovering Unwarranted Associations in Data-Driven Applications , 2015, 2017 IEEE European Symposium on Security and Privacy (EuroS&P).

[91]  Toon Calders,et al.  Why Unbiased Computational Processes Can Lead to Discriminative Decision Procedures , 2013, Discrimination and Privacy in the Information Society.

[92]  Alexandra Chouldechova,et al.  Fairer and more accurate, but for whom? , 2017, ArXiv.

[93]  Ekaba Bisong Google AutoML: Cloud Vision , 2019 .

[94]  Andreas Krause,et al.  Preventing Disparate Treatment in Sequential Decision Making , 2018, IJCAI.

[95]  D. Goldstein,et al.  Simple Rules for Complex Decisions , 2017, 1702.04690.

[96]  A. Zwitter Big Data ethics , 2014, Big Data Soc..

[97]  Erez Shmueli,et al.  Algorithmic Fairness , 2020, ArXiv.

[98]  Harshit Kumar,et al.  Fairness In Reciprocal Recommendations: A Speed-Dating Study , 2018, UMAP.

[99]  Rakesh Agrawal,et al.  Privacy-preserving data mining , 2000, SIGMOD 2000.

[100]  Suresh Venkatasubramanian,et al.  Auditing black-box models for indirect influence , 2016, Knowledge and Information Systems.

[101]  Paula Boddington,et al.  Towards a Code of Ethics for Artificial Intelligence , 2017, Artificial Intelligence: Foundations, Theory, and Algorithms.

[102]  Nicol Turner Lee,et al.  Detecting racial bias in algorithms and machine learning , 2018, J. Inf. Commun. Ethics Soc..

[103]  K. Yeung Algorithmic Regulation: A Critical Interrogation , 2017 .

[104]  Berk Ustun,et al.  Repairing without Retraining: Avoiding Disparate Impact with Counterfactual Distributions , 2019, ICML.

[105]  R. Guion Employment Tests and Discriminatory Hiring , 1966 .

[106]  Lucy Vasserman,et al.  Measuring and Mitigating Unintended Bias in Text Classification , 2018, AIES.

[107]  Thorsten Joachims,et al.  Fairness of Exposure in Rankings , 2018, KDD.

[108]  Akiko Takeda,et al.  Nonconvex Optimization for Regression with Fairness Constraints , 2018, ICML.

[109]  James Caverlee,et al.  Fairness-Aware Tensor-Based Recommendation , 2018, CIKM.

[110]  Marleen Huysman,et al.  Hiring Algorithms: An Ethnography of Fairness in Practice , 2019, ICIS.

[111]  Ning Wang,et al.  Assessing the bias in samples of large online networks , 2014, Soc. Networks.

[112]  John Langford,et al.  A Reductions Approach to Fair Classification , 2018, ICML.

[113]  Robert Heckman,et al.  Integrating Ethics within Machine Learning Courses , 2019, ACM Trans. Comput. Educ..

[114]  Chris Piech,et al.  Achieving Fairness through Adversarial Learning: an Application to Recidivism Prediction , 2018, ArXiv.

[115]  David Malakoff Fighting Fire With Fire , 1999, Science.

[116]  ASHWIN MACHANAVAJJHALA,et al.  L-diversity: privacy beyond k-anonymity , 2006, 22nd International Conference on Data Engineering (ICDE'06).

[117]  Ilya Shpitser,et al.  Learning Optimal Fair Policies , 2018, ICML.

[118]  Stefano Tarantola,et al.  Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models , 2004 .

[119]  Silvio Lattanzi,et al.  Matroids, Matchings, and Fairness , 2019, AISTATS.

[120]  Kevin Leyton-Brown,et al.  Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms , 2012, KDD.

[121]  Stephen Roberts,et al.  A General Framework for Fair Regression , 2018, Entropy.

[122]  Aaron Roth,et al.  Fairness in Learning: Classic and Contextual Bandits , 2016, NIPS.

[123]  Shou-De Lin,et al.  Fairness-Aware Loan Recommendation for Microfinance Services , 2014, SocialCom '14.

[124]  Aaron Klein,et al.  Efficient and Robust Automated Machine Learning , 2015, NIPS.

[125]  Dan Suciu,et al.  Data Management for Causal Algorithmic Fairness , 2019, IEEE Data Eng. Bull..

[126]  Bo Gao,et al.  Exploratory Visualization Design Towards Online Social Network Privacy and Data Literacy , 2015 .

[127]  Ljupco Kocarev,et al.  Integrating Technical and Legal Concepts of Privacy , 2018, IEEE Access.

[128]  Max Simchowitz,et al.  The Implicit Fairness Criterion of Unconstrained Learning , 2018, ICML.

[129]  Samir Khuller,et al.  On the cost of essentially fair clusterings , 2018, APPROX-RANDOM.

[130]  Harini Suresh,et al.  A Framework for Understanding Unintended Consequences of Machine Learning , 2019, ArXiv.

[131]  D. Massey American Apartheid: Segregation and the Making of the Underclass , 1993 .

[132]  Kush R. Varshney,et al.  Data Pre-Processing for Discrimination Prevention: Information-Theoretic Optimization and Analysis , 2018, IEEE Journal of Selected Topics in Signal Processing.

[133]  Rayid Ghani,et al.  Aequitas: A Bias and Fairness Audit Toolkit , 2018, ArXiv.

[134]  Cynthia Rudin,et al.  Learning Cost-Effective and Interpretable Treatment Regimes , 2017, AISTATS.

[135]  Sujit Gujar,et al.  A Neural Network Framework for Fair Classifier , 2018, ArXiv.

[136]  Klaus-Robert Müller,et al.  Covariate Shift Adaptation by Importance Weighted Cross Validation , 2007, J. Mach. Learn. Res..

[137]  Dietmar Jannach,et al.  What recommenders recommend: an analysis of recommendation biases and possible countermeasures , 2015, User Modeling and User-Adapted Interaction.

[138]  Toon Calders,et al.  Data preprocessing techniques for classification without discrimination , 2011, Knowledge and Information Systems.

[139]  Toniann Pitassi,et al.  Learning Adversarially Fair and Transferable Representations , 2018, ICML.

[140]  Yang Liu,et al.  Bayesian Fairness , 2019, AAAI.

[141]  Adam Tauman Kalai,et al.  Unleashing Linear Optimizers for Group-Fair Learning and Optimization , 2018, COLT.

[142]  Josep Domingo-Ferrer,et al.  A Methodology for Direct and Indirect Discrimination Prevention in Data Mining , 2013, IEEE Transactions on Knowledge and Data Engineering.

[143]  Silvia Chiappa,et al.  A Causal Bayesian Networks Viewpoint on Fairness , 2018, Privacy and Identity Management.

[144]  Toon Calders,et al.  Three naive Bayes approaches for discrimination-free classification , 2010, Data Mining and Knowledge Discovery.

[145]  Bert Huang,et al.  Beyond Parity: Fairness Objectives for Collaborative Filtering , 2017, NIPS.

[146]  Sharad Goel,et al.  The Measure and Mismeasure of Fairness: A Critical Review of Fair Machine Learning , 2018, ArXiv.

[147]  R. L. Thorndike CONCEPTS OF CULTURE-FAIRNESS , 1971 .

[148]  Tal Yarkoni Personality in 100,000 Words: A large-scale analysis of personality and word use among bloggers. , 2010, Journal of research in personality.

[149]  Krishna P. Gummadi,et al.  Fairness Behind a Veil of Ignorance: A Welfare Analysis for Automated Decision Making , 2018, NeurIPS.

[150]  Pak-Hang Wong,et al.  Democratizing Algorithmic Fairness , 2019, Philosophy & Technology.

[151]  Emma Pierson,et al.  Gender differences in beliefs about algorithmic fairness , 2017, ArXiv.

[152]  Krishna P. Gummadi,et al.  Equity of Attention: Amortizing Individual Fairness in Rankings , 2018, SIGIR.

[153]  Jon M. Kleinberg,et al.  Inherent Trade-Offs in the Fair Determination of Risk Scores , 2016, ITCS.

[154]  Nisheeth K. Vishnoi,et al.  How to be Fair and Diverse? , 2016, ArXiv.

[155]  Julia Rubin,et al.  Fairness Definitions Explained , 2018, 2018 IEEE/ACM International Workshop on Software Fairness (FairWare).

[156]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[157]  J. Paul Brooks,et al.  Support Vector Machines with the Ramp Loss and the Hard Margin Loss , 2011, Oper. Res..

[158]  James M. Hickey,et al.  Counterfactual fairness: removing direct effects through regularization , 2020, ArXiv.

[159]  Cathy O'Neil,et al.  Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy , 2016, Vikalpa: The Journal for Decision Makers.

[160]  N. Cole BIAS IN SELECTION , 1973 .

[161]  Silvia Chiappa,et al.  Wasserstein Fair Classification , 2019, UAI.

[162]  Besnik Fetahu,et al.  FAE: A Fairness-Aware Ensemble Framework , 2019, 2019 IEEE International Conference on Big Data (Big Data).

[163]  Thorsten Joachims,et al.  Policy Learning for Fairness in Ranking , 2019, NeurIPS.

[164]  L. Elisa Celis,et al.  Improved Adversarial Learning for Fair Classification , 2019, ArXiv.

[165]  Scott Sanner,et al.  Algorithms for Direct 0-1 Loss Optimization in Binary Classification , 2013, ICML.

[166]  Katrina Ligett,et al.  Penalizing Unfairness in Binary Classification , 2017 .

[167]  Rachel K. E. Bellamy,et al.  AI Fairness 360: An Extensible Toolkit for Detecting, Understanding, and Mitigating Unwanted Algorithmic Bias , 2018, ArXiv.

[168]  Alexandra Chouldechova,et al.  Fair prediction with disparate impact: A study of bias in recidivism prediction instruments , 2016, Big Data.

[169]  Emilia Gómez,et al.  Why Machine Learning May Lead to Unfairness: Evidence from Risk Assessment for Juvenile Justice in Catalonia , 2019, ICAIL.

[170]  Jun Sakuma,et al.  Prediction with Model-Based Neutrality , 2013, ECML/PKDD.

[171]  Dubravka Cecez-Kecmanovic,et al.  Algorithmic Pollution: Understanding and Responding to Negative Consequences of Algorithmic Decision-Making , 2018, IS&O.

[172]  Kristina Lerman,et al.  A Survey on Bias and Fairness in Machine Learning , 2019, ACM Comput. Surv..

[173]  Armando Solar-Lezama,et al.  Probabilistic verification of fairness properties via concentration , 2018, Proc. ACM Program. Lang..

[174]  Dan Suciu,et al.  Interventional Fairness: Causal Database Repair for Algorithmic Fairness , 2019, SIGMOD Conference.

[175]  Kristian Lum,et al.  An algorithm for removing sensitive information: Application to race-independent recidivism prediction , 2017, The Annals of Applied Statistics.

[176]  Xiangliang Zhang,et al.  Decision Theory for Discrimination-Aware Classification , 2012, 2012 IEEE 12th International Conference on Data Mining.

[177]  Yiannis Kompatsiaris,et al.  Adaptive Sensitive Reweighting to Mitigate Bias in Fairness-aware Classification , 2018, WWW.

[178]  Toniann Pitassi,et al.  Learning Fair Representations , 2013, ICML.

[179]  Ben Hutchinson,et al.  50 Years of Test (Un)fairness: Lessons for Machine Learning , 2018, FAT.

[180]  Matt J. Kusner,et al.  Counterfactual Fairness , 2017, NIPS.

[181]  A. Dawid The Well-Calibrated Bayesian , 1982 .

[182]  Nathan Kallus,et al.  Residual Unfairness in Fair Machine Learning from Prejudiced Data , 2018, ICML.

[183]  Krishna P. Gummadi,et al.  iFair: Learning Individually Fair Data Representations for Algorithmic Decision Making , 2018, 2019 IEEE 35th International Conference on Data Engineering (ICDE).

[184]  Jongbin Jung,et al.  Omitted and Included Variable Bias in Tests for Disparate Impact , 2018, 1809.05651.

[185]  Ilya Shpitser,et al.  Fair Inference on Outcomes , 2017, AAAI.

[186]  Yuriy Brun,et al.  Fairness testing: testing software for discrimination , 2017, ESEC/SIGSOFT FSE.

[187]  Shai Ben-David,et al.  Empirical Risk Minimization under Fairness Constraints , 2018, NeurIPS.

[188]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[189]  Ninghui Li,et al.  t-Closeness: Privacy Beyond k-Anonymity and l-Diversity , 2007, 2007 IEEE 23rd International Conference on Data Engineering.

[190]  Simon Caton,et al.  Mitigation of Unintended Biases against Non-Native English Texts in Sentiment Analysis , 2019, AICS.

[191]  Sebastian Benthall,et al.  Racial categories in machine learning , 2018, FAT.

[192]  Arvind Narayanan,et al.  Semantics derived automatically from language corpora contain human-like biases , 2016, Science.

[193]  Kush R. Varshney,et al.  Optimized Pre-Processing for Discrimination Prevention , 2017, NIPS.

[194]  Avi Feller,et al.  Algorithmic Decision Making in the Presence of Unmeasured Confounding , 2018, 1805.01868.

[195]  Tal Z. Zarsky,et al.  The Trouble with Algorithmic Decisions , 2016 .

[196]  E. Pierson Demographics and discussion influence views on algorithmic fairness , 2017 .

[197]  Guy N. Rothblum,et al.  Calibration for the (Computationally-Identifiable) Masses , 2017, ArXiv.

[198]  Bettina Berendt,et al.  Better decision support through exploratory discrimination-aware data mining: foundations and empirical evidence , 2014, Artificial Intelligence and Law.

[199]  Ricardo Baeza-Yates,et al.  FA*IR: A Fair Top-k Ranking Algorithm , 2017, CIKM.

[200]  Michael Veale,et al.  Fairness and Accountability Design Needs for Algorithmic Support in High-Stakes Public Sector Decision-Making , 2018, CHI.

[201]  Yuan Shi,et al.  Geodesic flow kernel for unsupervised domain adaptation , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[202]  Timnit Gebru,et al.  Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification , 2018, FAT.

[203]  Seth Neel,et al.  A Convex Framework for Fair Regression , 2017, ArXiv.

[204]  Kevin A. Clarke The Phantom Menace: Omitted Variable Bias in Econometric Research , 2005 .

[205]  Nathan Srebro,et al.  Equality of Opportunity in Supervised Learning , 2016, NIPS.

[206]  Carlos Eduardo Scheidegger,et al.  Certifying and Removing Disparate Impact , 2014, KDD.

[207]  Nicole Immorlica,et al.  The Disparate Effects of Strategic Manipulation , 2018, FAT.

[208]  Boi Faltings,et al.  Non-Discriminatory Machine Learning through Convex Fairness Criteria , 2018, AAAI.

[209]  Nathan Kallus,et al.  Balanced Policy Evaluation and Learning , 2017, NeurIPS.

[210]  Jonathan Herington,et al.  Measuring the Biases that Matter: The Ethical and Casual Foundations for Measures of Fairness in Algorithms , 2019, FAT.

[211]  Kush R. Varshney,et al.  Fair Transfer Learning with Missing Protected Attributes , 2019, AIES.

[212]  Solon Barocas,et al.  Prediction-Based Decisions and Fairness: A Catalogue of Choices, Assumptions, and Definitions , 2018, 1811.07867.

[213]  Nisheeth K. Vishnoi,et al.  Stable and Fair Classification , 2019, ICML.

[214]  R. Darlington,et al.  ANOTHER LOOK AT “CULTURAL FAIRNESS”1 , 1971 .

[215]  Christopher Jung,et al.  Online Learning with an Unknown Fairness Metric , 2018, NeurIPS.

[216]  Matt J. Kusner,et al.  When Worlds Collide: Integrating Different Counterfactual Assumptions in Fairness , 2017, NIPS.

[217]  Andrew D. Selbst Disparate Impact in Big Data Policing , 2017 .

[218]  Ahmed Hosny,et al.  The Dataset Nutrition Label: A Framework To Drive Higher Data Quality Standards , 2018, Data Protection and Privacy.

[219]  Franco Turini,et al.  A study of top-k measures for discrimination discovery , 2012, SAC '12.

[220]  Krishna P. Gummadi,et al.  Fairness Beyond Disparate Treatment & Disparate Impact: Learning Classification without Disparate Mistreatment , 2016, WWW.

[221]  M. Zimmer “But the data is already public”: on the ethics of research in Facebook , 2010, Ethics and Information Technology.

[222]  Solon Barocas,et al.  Mitigating Bias in Algorithmic Employment Screening: Evaluating Claims and Practices , 2019, SSRN Electronic Journal.

[223]  Ohad Shamir,et al.  Learnability, Stability and Uniform Convergence , 2010, J. Mach. Learn. Res..

[224]  Margeret Hall,et al.  Am I who I say I am? Unobtrusive self-representation and personality recognition on Facebook , 2017, PloS one.

[225]  Bernhard Schölkopf,et al.  Avoiding Discrimination through Causal Reasoning , 2017, NIPS.

[226]  Valero Laparra,et al.  Fair Kernel Learning , 2017, ECML/PKDD.

[227]  Yizhou Sun,et al.  Learning Fair Representations via an Adversarial Framework , 2019, ArXiv.

[228]  Zhe Zhang,et al.  Identifying Significant Predictive Bias in Classifiers , 2016, ArXiv.

[229]  T. Cleary TEST BIAS: VALIDITY OF THE SCHOLASTIC APTITUDE TEST FOR NEGRO AND WHITE STUDENTS IN INTEGRATED COLLEGES , 1966 .

[230]  Toniann Pitassi,et al.  Fairness through awareness , 2011, ITCS '12.

[231]  Amir Globerson,et al.  Nightmare at test time: robust learning by feature deletion , 2006, ICML.

[232]  Philip S. Yu,et al.  Privacy-preserving data publishing: A survey of recent developments , 2010, CSUR.

[233]  Allison Woodruff,et al.  Putting Fairness Principles into Practice: Challenges, Metrics, and Improvements , 2019, AIES.

[234]  Stan Szpakowicz,et al.  Beyond Accuracy, F-Score and ROC: A Family of Discriminant Measures for Performance Evaluation , 2006, Australian Conference on Artificial Intelligence.

[235]  Kristian Lum,et al.  A statistical framework for fair predictive algorithms , 2016, ArXiv.

[236]  Silvio Lattanzi,et al.  Fair Clustering Through Fairlets , 2018, NIPS.

[237]  Esther Rolf,et al.  Delayed Impact of Fair Machine Learning , 2018, ICML.

[238]  Saif Mohammad,et al.  Examining Gender and Race Bias in Two Hundred Sentiment Analysis Systems , 2018, *SEMEVAL.

[239]  Lu Zhang,et al.  FairGAN: Fairness-aware Generative Adversarial Networks , 2018, 2018 IEEE International Conference on Big Data (Big Data).

[240]  Christopher Jung,et al.  Fair Prediction with Endogenous Behavior , 2020, EC.

[241]  Nathan Srebro,et al.  Learning Non-Discriminatory Predictors , 2017, COLT.

[242]  Melanie Schmidt,et al.  Privacy preserving clustering with constraints , 2018, ICALP.

[243]  Emilio Soria Olivas,et al.  Handbook of Research on Machine Learning Applications and Trends : Algorithms , Methods , and Techniques , 2009 .

[244]  Salvatore Ruggieri,et al.  A multidisciplinary survey on discrimination analysis , 2013, The Knowledge Engineering Review.

[245]  D. Boyd,et al.  CRITICAL QUESTIONS FOR BIG DATA , 2012 .

[246]  Steffen Bickel,et al.  Discriminative Learning Under Covariate Shift , 2009, J. Mach. Learn. Res..

[247]  Toon Calders,et al.  Discrimination Aware Decision Tree Learning , 2010, 2010 IEEE International Conference on Data Mining.

[248]  Krikamol Muandet,et al.  Fair Decisions Despite Imperfect Predictions , 2019, AISTATS.

[249]  Andreas Krause,et al.  Mathematical Notions vs. Human Perception of Fairness: A Descriptive Approach to Fairness for Machine Learning , 2019, KDD.

[250]  Christian Sohler,et al.  Fair Coresets and Streaming Algorithms for Fair k-Means Clustering , 2018, ArXiv.

[251]  Christopher Jung,et al.  Fair Algorithms for Learning in Allocation Problems , 2018, FAT.

[252]  Seth Neel,et al.  Preventing Fairness Gerrymandering: Auditing and Learning for Subgroup Fairness , 2017, ICML.

[253]  Dean P. Foster,et al.  Impartial Predictive Modeling: Ensuring Fairness in Arbitrary Models , 2016 .

[254]  Gilles Louppe,et al.  Learning to Pivot with Adversarial Networks , 2016, NIPS.

[255]  Nasim Sonboli,et al.  Balanced Neighborhoods for Multi-sided Fairness in Recommendation , 2018, FAT.

[256]  Rachael Tatman,et al.  Gender and Dialect Bias in YouTube’s Automatic Captions , 2017, EthNLP@EACL.

[257]  Ben Green,et al.  The false promise of risk assessments: epistemic reform and the limits of fairness , 2020, FAT*.

[258]  Guy N. Rothblum,et al.  Fairness Through Computationally-Bounded Awareness , 2018, NeurIPS.

[259]  Krishna P. Gummadi,et al.  Equality of Voice: Towards Fair Representation in Crowdsourced Top-K Recommendations , 2018, FAT.

[260]  Henriette Cramer,et al.  Representation and communication: challenges in interpreting large social media datasets , 2013, CSCW.

[261]  Eduardo Blanco,et al.  Toward Personality Insights from Language Exploration in Social Media , 2013, AAAI Spring Symposium: Analyzing Microtext.

[262]  Evaggelia Pitoura,et al.  On Measuring Bias in Online Information , 2017, SGMD.