Whisker-Mediated Touch System in Rodents: From Neuron to Behavior

A key question in systems neuroscience is to identify how sensory stimuli are represented in neuronal activity, and how the activity of sensory neurons in turn is “read out” by downstream neurons and give rise to behavior. The choice of a proper model system to address these questions, is therefore a crucial step. Over the past decade, the increasingly powerful array of experimental approaches that has become available in non-primate models (e.g., optogenetics and two-photon imaging) has spurred a renewed interest for the use of rodent models in systems neuroscience research. Here, I introduce the rodent whisker-mediated touch system as a structurally well-established and well-organized model system which, despite its simplicity, gives rise to complex behaviors. This system serves as a behaviorally efficient model system; known as nocturnal animals, along with their olfaction, rodents rely on their whisker-mediated touch system to collect information about their surrounding environment. Moreover, this system represents a well-studied circuitry with a somatotopic organization. At every stage of processing, one can identify anatomical and functional topographic maps of whiskers; “barrelettes” in the brainstem nuclei, “barreloids” in the sensory thalamus, and “barrels” in the cortex. This article provides a brief review on the basic anatomy and function of the whisker system in rodents.

[1]  Zengcai V. Guo,et al.  A motor cortex circuit for motor planning and movement , 2015, Nature.

[2]  Martin Deschênes,et al.  The organization of corticothalamic projections: reciprocity versus parity , 1998, Brain Research Reviews.

[3]  K. Harris,et al.  Cortical connectivity and sensory coding , 2013, Nature.

[4]  K. Simpson,et al.  Patterns of convergence in rat zona incerta from the trigeminal nuclear complex: Light and electron microscopic study , 2008, The Journal of comparative neurology.

[5]  D. Kleinfeld,et al.  Activation and measurement of free whisking in the lightly anesthetized rodent , 2014, Nature Protocols.

[6]  Daniel J. Simons,et al.  Texture discrimination and unit recordings in the rat whisker/barrel system , 2002, Physiology & Behavior.

[7]  M. Diamond,et al.  Dye-enhanced visualization of rat whiskers for behavioral studies , 2017, eLife.

[8]  E G Jones,et al.  Topological precision in the thalamic projection to neonatal mouse barrel cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  M. Moser,et al.  Impaired Spatial Representation in CA1 after Lesion of Direct Input from Entorhinal Cortex , 2008, Neuron.

[10]  J. Dörfl The musculature of the mystacial vibrissae of the white mouse. , 1982, Journal of anatomy.

[11]  B. Sakmann,et al.  Developmental Switch in the Short-Term Modification of Unitary EPSPs Evoked in Layer 2/3 and Layer 5 Pyramidal Neurons of Rat Neocortex , 1999, The Journal of Neuroscience.

[12]  Roger M. Harris,et al.  Axon collaterals in the thalamic reticular nucleus from thalamocortical neurons of the rat ventrobasal thalamus , 1987, The Journal of comparative neurology.

[13]  B Poucet,et al.  Working memory, response selection, and effortful processing in rats with medial prefrontal lesions. , 1994, Behavioral neuroscience.

[14]  T. Prescott,et al.  Active vibrissal sensing in rodents and marsupials , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[15]  Romain Brette,et al.  Late Emergence of the Vibrissa Direction Selectivity Map in the Rat Barrel Cortex , 2011, The Journal of Neuroscience.

[16]  R P Kesner,et al.  Differential involvement of the dorsal anterior cingulate and prelimbic-infralimbic areas of the rodent prefrontal cortex in spatial working memory. , 1998, Behavioral neuroscience.

[17]  S. Finger,et al.  Large and small medial frontal cortex lesions and spatial performance of the rat , 1987, Brain Research Bulletin.

[18]  Sylvain Crochet,et al.  Synaptic Computation and Sensory Processing in Neocortical Layer 2/3 , 2013, Neuron.

[19]  S S Hsiao,et al.  Effects of selective attention on spatial form processing in monkey primary and secondary somatosensory cortex. , 1993, Journal of neurophysiology.

[20]  KF Jensen,et al.  Terminal arbors of axons projecting to the somatosensory cortex of the adult rat. II. The altered morphology of thalamocortical afferents following neonatal infraorbital nerve cut , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[21]  H. Markram,et al.  Anatomy and physiology of the thick-tufted layer 5 pyramidal neuron , 2015, Front. Cell. Neurosci..

[22]  A. Scheibel,et al.  The organization of the nucleus reticularis thalami: a Golgi study. , 1966, Brain research.

[23]  Nathan G. Clack,et al.  Vibrissa-Based Object Localization in Head-Fixed Mice , 2010, The Journal of Neuroscience.

[24]  D. Kleinfeld,et al.  Goal-directed whisking increases phase-locking between vibrissa movement and electrical activity in primary sensory cortex in rat. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Anthony M Zador,et al.  Differences in Sensitivity to Neural Timing among Cortical Areas , 2012, The Journal of Neuroscience.

[26]  M. Deschenes,et al.  Corticothalamic Projections from the Cortical Barrel Field to the Somatosensory Thalamus in Rats: A Single‐fibre Study Using Biocytin as an Anterograde Tracer , 1995, The European journal of neuroscience.

[27]  Timothy D. Hanks,et al.  Bounded Integration in Parietal Cortex Underlies Decisions Even When Viewing Duration Is Dictated by the Environment , 2008, The Journal of Neuroscience.

[28]  A. Pérez-Villalba Rhythms of the Brain, G. Buzsáki. Oxford University Press, Madison Avenue, New York (2006), Price: GB £42.00, p. 448, ISBN: 0-19-530106-4 , 2008 .

[29]  Mathew H. Evans,et al.  Tactile Discrimination Using Active Whisker Sensors , 2012, IEEE Sensors Journal.

[30]  D. Simons,et al.  Thalamic and corticocortical connections of the second somatic sensory area of the mouse , 1987, The Journal of comparative neurology.

[31]  Mohammad Mahdi Sabri,et al.  Dynamics of Population Activity in Rat Sensory Cortex: Network Correlations Predict Anatomical Arrangement and Information Content , 2016, Front. Neural Circuits.

[32]  Karl F. Jensen,et al.  Evidence for two complementary patterns of thalamic input to the rat somatosensory cortex , 1988, Brain Research.

[33]  Maik C. Stüttgen,et al.  The Head-fixed Behaving Rat—Procedures and Pitfalls , 2010, Somatosensory & motor research.

[34]  Sami El Boustani,et al.  Correlated input reveals coexisting coding schemes in a sensory cortex , 2012, Nature Neuroscience.

[35]  T. Woolsey,et al.  The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. , 1970, Brain research.

[36]  H. Bokor,et al.  Selective GABAergic Control of Higher-Order Thalamic Relays , 2005, Neuron.

[37]  I. Divac,et al.  Selective ablations within the prefrontal cortex of the rat and performance of delayed alternation , 1978 .

[38]  Bert Sakmann,et al.  Sensory integration across space and in time for decision making in the somatosensory system of rodents , 2007, Proceedings of the National Academy of Sciences.

[39]  T. Woolsey,et al.  A proportional relationship between peripheral innervation density and cortical neuron number in the somatosensory system of the mouse , 1975, Brain Research.

[40]  M A Nicolelis,et al.  Spatiotemporal properties of layer V neurons of the rat primary somatosensory cortex. , 1999, Cerebral cortex.

[41]  M. Diamond,et al.  Coherence between Rat Sensorimotor System and Hippocampus Is Enhanced during Tactile Discrimination , 2016, PLoS biology.

[42]  J. Mitrofanis,et al.  Evidence for a large projection from the zona incerta to the dorsal thalamus , 1999, The Journal of comparative neurology.

[43]  D. Simons,et al.  Spatial organization of thalamocortical and corticothalamic projection systems in the rat SmI barrel cortex , 1989, The Journal of comparative neurology.

[44]  W. Jenkins,et al.  Vibrissal roughness discrimination is barrelcortex-dependent , 1992, Behavioural Brain Research.

[45]  H. Sato,et al.  Temporal Characteristics of Response Integration Evoked by Multiple Whisker Stimulations in the Barrel Cortex of Rats , 1999, The Journal of Neuroscience.

[46]  Shaul Hestrin,et al.  Layer 6 Corticothalamic Neurons Activate a Cortical Output Layer, Layer 5a , 2014, The Journal of Neuroscience.

[47]  Sooyoung Chung,et al.  Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex , 2005, Nature.

[48]  E. Welker,et al.  Organization of feedback and feedforward projections of the barrel cortex: a PHA-L study in the mouse , 2004, Experimental Brain Research.

[49]  D. Simons,et al.  Biometric analyses of vibrissal tactile discrimination in the rat , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[50]  榎原 智美 Similarities and differences in the innervation of mystacial vibrissal follicle-sinus complexes in the rat and cat : A confocal microscopic study , 2002 .

[51]  B. Moghaddam,et al.  NMDA receptor antagonists impair prefrontal cortex function as assessed via spatial delayed alternation performance in rats: modulation by dopamine , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[52]  Shantanu P. Jadhav,et al.  Psychometric Curve and Behavioral Strategies for Whisker-Based Texture Discrimination in Rats , 2011, PloS one.

[53]  Sergio E. Lew,et al.  A spherical treadmill system to train head-fixed adult rats , 2017, Journal of Neuroscience Methods.

[54]  D. Kleinfeld,et al.  Distributed representation of vibrissa movement in the upper layers of somatosensory cortex revealed with voltage‐sensitive dyes , 1996, The Journal of comparative neurology.

[55]  J. M. Gibson,et al.  Quantitative studies of stimulus coding in first-order vibrissa afferents of rats. 2. Adaptation and coding of stimulus parameters. , 1983, Somatosensory research.

[56]  R. Frostig,et al.  Whisker-based discrimination of object orientation determined with a rapid training paradigm , 2005, Neurobiology of Learning and Memory.

[57]  J. Poulet,et al.  Synaptic Mechanisms Underlying Sparse Coding of Active Touch , 2011, Neuron.

[58]  M A Nicolelis,et al.  Nonlinear processing of tactile information in the thalamocortical loop. , 1997, Journal of neurophysiology.

[59]  S. B. Vincent The function of the vibrissae in the behavior of the white rat , 1912 .

[60]  Rune W. Berg,et al.  Rhythmic whisking by rat: retraction as well as protraction of the vibrissae is under active muscular control. , 2003, Journal of neurophysiology.

[61]  Snigdha Roy,et al.  Dynamic Correlation between Whisking and Breathing Rhythms in Mice , 2012, The Journal of Neuroscience.

[62]  Jochen Staiger,et al.  S1 laminar specialization , 2010, Scholarpedia.

[63]  M. Hartmann,et al.  Right–Left Asymmetries in the Whisking Behavior of Rats Anticipate Head Movements , 2006, The Journal of Neuroscience.

[64]  K. Svoboda,et al.  Interdigitated Paralemniscal and Lemniscal Pathways in the Mouse Barrel Cortex , 2006, PLoS biology.

[65]  J. Gibson Observations on active touch. , 1962, Psychological review.

[66]  Shubhodeep Chakrabarti,et al.  Topography of cortical projections to the dorsolateral neostriatum in rats: Multiple overlapping sensorimotor pathways , 2006, The Journal of comparative neurology.

[67]  M. Steriade,et al.  The reticular nucleus revisited: Intrinsic and network properties of a thalamic pacemaker , 2005, Progress in Neurobiology.

[68]  W. C. Hall,et al.  Reciprocal connections between the zona incerta and the pretectum and superior colliculus of the cat , 1997, Neuroscience.

[69]  Mathew E. Diamond,et al.  Texture Identification by Bounded Integration of Sensory Cortical Signals , 2019, Current Biology.

[70]  H. Killackey,et al.  Vibrissae representation in subcortical trigeminal centers of the neonatal rat , 1979, The Journal of comparative neurology.

[71]  G. N. Brito,et al.  Recovery of delayed alternation in rats after lesions in medial frontal cortex and septum. , 1980, Journal of comparative and physiological psychology.

[72]  M F Jacquin,et al.  Morphology and topography of identified primary afferents in trigeminal subnuclei principalis and oralis. , 1993, Journal of neurophysiology.

[73]  J. Lübke,et al.  Reliable synaptic connections between pairs of excitatory layer 4 neurones within a single ‘barrel’ of developing rat somatosensory cortex , 1999, The Journal of physiology.

[74]  Johannes M. Mayrhofer,et al.  Tactile frequency discrimination is enhanced by circumventing neocortical adaptation , 2014, Nature Neuroscience.

[75]  Christine M Constantinople,et al.  Deep Cortical Layers Are Activated Directly by Thalamus , 2013, Science.

[76]  M. Herkenham Laminar organization of thalamic projections to the rat neocortex. , 1980, Science.

[77]  L. Pubols,et al.  The Merkel rete papilla--a slowly adapting sensory receptor in mammalian glabrous skin. , 1971, Brain research.

[78]  H. Killackey,et al.  The organization of the neonatal rat's brainstem trigeminal complex and its role in the formation of central trigeminal patterns , 1985, The Journal of comparative neurology.

[79]  F. Rice,et al.  Comprehensive immunofluorescence and lectin binding analysis of vibrissal follicle sinus complex innervation in the mystacial pad of the rat , 1997, The Journal of comparative neurology.

[80]  H. Markram,et al.  Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. , 1997, The Journal of physiology.

[81]  Maik C. Stüttgen,et al.  Psychophysical and neurometric detection performance under stimulus uncertainty , 2008, Nature Neuroscience.

[82]  S. Nelson,et al.  Layer V neurons in mouse cortex projecting to different targets have distinct physiological properties. , 2007, Journal of neurophysiology.

[83]  B. Munger,et al.  A comparative light microscopic analysis of the sensory innervation of the mystacial pad. I. Innervation of vibrissal follicle‐sinus complexes , 1986, The Journal of comparative neurology.

[84]  Fan Wang,et al.  More than a rhythm of life: breathing as a binder of orofacial sensation , 2014, Nature Neuroscience.

[85]  J. W. Kuhlman,et al.  Functional topography of the human mu rhythm. , 1978, Electroencephalography and clinical neurophysiology.

[86]  F. Ebner,et al.  Sensorimotor plasticity in the rodent vibrissa system , 2001 .

[87]  D. Rector,et al.  Conditioned lick behavior and evoked responses using whisker twitches in head restrained rats , 2009, Behavioural Brain Research.

[88]  Albert Compte,et al.  Stimulus Dependence of Barrel Cortex Directional Selectivity , 2006, PloS one.

[89]  R Bermejo,et al.  Discriminative whisking in the head-fixed rat: optoelectronic monitoring during tactile detection and discrimination tasks. , 2001, Somatosensory & motor research.

[90]  Ehsan Arabzadeh,et al.  Correlation between Cortical State and Locus Coeruleus Activity: Implications for Sensory Coding in Rat Barrel Cortex , 2016, Front. Neural Circuits.

[91]  F. Crick Function of the thalamic reticular complex: the searchlight hypothesis. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[92]  KF Jensen,et al.  Terminal arbors of axons projecting to the somatosensory cortex of the adult rat. I. The normal morphology of specific thalamocortical afferents , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[93]  J. Mitrofanis,et al.  Anatomical evidence for somatotopic maps in the zona incerta of rats , 2002, Anatomy and Embryology.

[94]  T. Teyler,et al.  Laminar pattern of synaptic activity in rat primary visual cortex: comparison of in vivo and in vitro studies employing the current source density analysis , 1994, Brain Research.

[95]  T. Woolsey,et al.  The structural organization of layer IV in the somatosensory region (S I) of mouse cerebral cortex , 1970 .

[96]  M E Diamond,et al.  Distribution of tactile learning and its neural basis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[97]  R. Romo,et al.  Neuronal correlates of sensory discrimination in the somatosensory cortex. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[98]  Lucie A. Huet,et al.  The search space of the rat during whisking behavior , 2014, Journal of Experimental Biology.

[99]  J. Taube Head direction cells and the neurophysiological basis for a sense of direction , 1998, Progress in Neurobiology.

[100]  M. Castro-Alamancos,et al.  Absence of Rapid Sensory Adaptation in Neocortex during Information Processing States , 2004, Neuron.

[101]  Mathew E. Diamond,et al.  Hippocampal Representation of Touch-Guided Behavior in Rats: Persistent and Independent Traces of Stimulus and Reward Location , 2011, PloS one.

[102]  J. Lübke,et al.  The Axon of Excitatory Neurons in the Neocortex: Projection Patterns and Target Specificity , 2010 .

[103]  J. D. Bruin,et al.  A behavioural analysis of rats with damage to the medial prefrontal cortex using the morris water maze: evidence for behavioural flexibility, but not for impaired spatial navigation , 1994, Brain Research.

[104]  Timothy D. Hanks,et al.  Microstimulation of macaque area LIP affects decision-making in a motion discrimination task , 2006, Nature Neuroscience.

[105]  M. Deschenes,et al.  Dendroarchitecture and Lateral Inhibition in Thalamic Barreloids , 2004, The Journal of Neuroscience.

[106]  D. Simons,et al.  Electromyographic activity of mystacial pad musculature during whisking behavior in the rat. , 1991, Somatosensory & motor research.

[107]  A. Fairhall,et al.  Shifts in Coding Properties and Maintenance of Information Transmission during Adaptation in Barrel Cortex , 2007, PLoS biology.

[108]  Edward M. Callaway,et al.  Retrograde Tracing with Recombinant Rabies Virus Reveals Correlations Between Projection Targets and Dendritic Architecture in Layer 5 of Mouse Barrel Cortex , 2007, Frontiers in neural circuits.

[109]  R. Emmers Organization of the first and the second somesthetic regions (SI and SII) in the rat thalamus , 1965, The Journal of comparative neurology.

[110]  David S. Greenberg,et al.  Spatial Organization of Neuronal Population Responses in Layer 2/3 of Rat Barrel Cortex , 2007, The Journal of Neuroscience.

[111]  M. Armstrong‐James,et al.  Flow of excitation within rat barrel cortex on striking a single vibrissa. , 1992, Journal of neurophysiology.

[112]  M. Diamond,et al.  Neuronal Activity in Rat Barrel Cortex Underlying Texture Discrimination , 2007, PLoS biology.

[113]  Gonzalo H. Otazu,et al.  Engaging in an auditory task suppresses responses in auditory cortex , 2009, Nature Neuroscience.

[114]  Michael Brecht,et al.  Barrel cortex and whisker-mediated behaviors , 2007, Current Opinion in Neurobiology.

[115]  J. Dörfl The innervation of the mystacial region of the white mouse: A topographical study. , 1985, Journal of anatomy.

[116]  Adrienne L. Fairhall,et al.  Shifts in Coding Properties and Maintenance of Information Transmission during Adaptation to Whisker Motion in Barrel Cortex , 2007 .

[117]  F. Ebner,et al.  Somatic sensory responses in the rostral sector of the posterior group (POm) and in the ventral posterior medial nucleus (VPM) of the rat thalamus , 1992, The Journal of comparative neurology.

[118]  R Kötter,et al.  Morphology, electrophysiology and functional input connectivity of pyramidal neurons characterizes a genuine layer va in the primary somatosensory cortex. , 2006, Cerebral cortex.

[119]  D. Kleinfeld,et al.  Adaptive Filtering of Vibrissa Input in Motor Cortex of Rat , 2002, Neuron.

[120]  M. Deschenes,et al.  Substrate for Cross-Talk Inhibition between Thalamic Barreloids , 2002, The Journal of Neuroscience.

[121]  Fan Wang,et al.  Inhibition, Not Excitation, Drives Rhythmic Whisking , 2016, Neuron.

[122]  Mathew E Diamond,et al.  Whisking and whisker kinematics during a texture classification task , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[123]  Yiannis Aloimonos,et al.  Purposive and qualitative active vision , 1990, [1990] Proceedings. 10th International Conference on Pattern Recognition.

[124]  J. Poulet,et al.  Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice , 2008, Nature.

[125]  E. White,et al.  Afferent and efferent projections of the region in mouse sml cortex which contains the posteromedial barrel subfield , 1977, The Journal of comparative neurology.

[126]  Erika E. Fanselow,et al.  Behavioral Modulation of Tactile Responses in the Rat Somatosensory System , 1999, The Journal of Neuroscience.

[127]  Jackie Schiller,et al.  Nonlinear dendritic processing determines angular tuning of barrel cortex neurons in vivo , 2012, Nature.

[128]  Dori Derdikman,et al.  Tracking whisker and head movements in unrestrained behaving rodents. , 2005, Journal of neurophysiology.

[129]  K. Svoboda,et al.  Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice , 2008, Nature.

[130]  M. Diamond,et al.  Tactile perception and working memory in rats and humans , 2014, Proceedings of the National Academy of Sciences.

[131]  J K Chapin,et al.  A major direct GABAergic pathway from zona incerta to neocortex. , 1990, Science.

[132]  Thomas A. Woolsey,et al.  Cytoarchitectonic correlates of the vibrissae in the medullary trigeminal complex of the mouse , 1984, Brain Research.

[133]  J. M. Gibson,et al.  Comparison of response properties of cerebellar- and thalamic-projecting interpolaris neurons. , 1982, Journal of neurophysiology.

[134]  H. Ogawa,et al.  Regional Differences of Callosal Connections in the Granular Zones of the Primary Somatosensory Cortex in Rats , 1997, Brain Research Bulletin.

[135]  E. G. Jones,et al.  Some aspects of the organization of the thalamic reticular complex , 2004, The Journal of comparative neurology.

[136]  David Kleinfeld,et al.  Hierarchy of orofacial rhythms revealed through whisking and breathing , 2013, Nature.

[137]  C. Petersen,et al.  Correlating whisker behavior with membrane potential in barrel cortex of awake mice , 2006, Nature Neuroscience.

[138]  Laura D. Lewis,et al.  Thalamic reticular nucleus induces fast and local modulation of arousal state , 2015, eLife.

[139]  E. Guic-Robles,et al.  Rats can learn a roughness discrimination using only their vibrissal system , 1989, Behavioural Brain Research.

[140]  T. Hafting,et al.  Microstructure of a spatial map in the entorhinal cortex , 2005, Nature.

[141]  Maik C. Stüttgen,et al.  Integration of Vibrotactile Signals for Whisker-Related Perception in Rats Is Governed by Short Time Constants: Comparison of Neurometric and Psychometric Detection Performance , 2010, The Journal of Neuroscience.

[142]  M. Jacquin,et al.  Structure‐function relationships in rat brainstem subnucleus interpolaris: IV. Projection neurons , 1989, The Journal of comparative neurology.

[143]  A. Thomson,et al.  Interlaminar connections in the neocortex. , 2003, Cerebral cortex.

[144]  R. Romo,et al.  Somatosensory discrimination based on cortical microstimulation , 1998, Nature.

[145]  Mathew E. Diamond,et al.  Supralinear and Supramodal Integration of Visual and Tactile Signals in Rats: Psychophysics and Neuronal Mechanisms , 2018, Neuron.

[146]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[147]  W. Jiang,et al.  Neuronal encoding of texture changes in the primary and the secondary somatosensory cortical areas of monkeys during passive texture discrimination. , 1997, Journal of neurophysiology.

[148]  Mike W Oram,et al.  Visual stimulation decorrelates neuronal activity. , 2011, Journal of neurophysiology.

[149]  M. Diamond,et al.  Spatial–Temporal Distribution of Whisker-Evoked Activity in Rat Somatosensory Cortex and the Coding of Stimulus Location , 2000, The Journal of Neuroscience.

[150]  R. Romo,et al.  Periodicity and Firing Rate As Candidate Neural Codes for the Frequency of Vibrotactile Stimuli , 2000, The Journal of Neuroscience.

[151]  Garrett B. Stanley,et al.  Behavioral and Electrophysiological Effects of Cortical Microstimulation Parameters , 2013, PloS one.

[152]  T A Woolsey,et al.  Local intra‐ and interlaminar connections in mouse barrel cortex , 1990, The Journal of comparative neurology.

[153]  J P de Bruin,et al.  Comparison of the effects of neonatal and adult medial prefrontal cortex lesions on food hoarding and spatial delayed alternation. , 1991, Behavioural brain research.

[154]  R. Romo,et al.  Neuronal Correlates of a Perceptual Decision in Ventral Premotor Cortex , 2004, Neuron.

[155]  David M Rector,et al.  Hemispheric mapping of secondary somatosensory cortex in the rat. , 2007, Journal of neurophysiology.

[156]  Joseph H. Solomon,et al.  Variability in velocity profiles during free-air whisking behavior of unrestrained rats. , 2008, Journal of neurophysiology.

[157]  Shubhodeep Chakrabarti,et al.  Differential origin of projections from SI barrel cortex to the whisker representations in SII and MI , 2006, The Journal of comparative neurology.

[158]  Alejandro Osorio-Forero,et al.  Thalamic reticular control of local sleep in mouse sensory cortex , 2018, eLife.

[159]  H. S. Meyer,et al.  Cell Type–Specific Three-Dimensional Structure of Thalamocortical Circuits in a Column of Rat Vibrissal Cortex , 2011, Cerebral cortex.

[160]  T. Sejnowski,et al.  Thalamocortical oscillations in the sleeping and aroused brain. , 1993, Science.

[161]  T. Woolsey,et al.  Structure of layer IV in the somatosensory neocortex of the rat: Description and comparison with the mouse , 1974, The Journal of comparative neurology.

[162]  F. Ebner,et al.  Modulation of receptive field properties of thalamic somatosensory neurons by the depth of anesthesia. , 1999, Journal of neurophysiology.

[163]  M. Steriade,et al.  Reticularis thalami neurons revisited: activity changes during shifts in states of vigilance , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[164]  D Kleinfeld,et al.  Central versus peripheral determinants of patterned spike activity in rat vibrissa cortex during whisking. , 1997, Journal of neurophysiology.

[165]  C. Yeo,et al.  Somatosensory Trigeminal Projections to the Inferior Olive, Cerebellum and other Precerebellar Nuclei in Rabbits , 1992, The European journal of neuroscience.

[166]  H. Barlow,et al.  Three factors limiting the reliable detection of light by retinal ganglion cells of the cat , 1969, The Journal of physiology.

[167]  F. Haiss,et al.  Spatiotemporal Dynamics of Cortical Sensorimotor Integration in Behaving Mice , 2007, Neuron.

[168]  E. Ahissar,et al.  Responses of trigeminal ganglion neurons to the radial distance of contact during active vibrissal touch. , 2006, Journal of neurophysiology.

[169]  J. Keehn,et al.  Licking Rates of Albino Rats , 1960, Science.

[170]  P J Donovick,et al.  Opossum trigeminal afferents associated with vibrissa and rhinarial mechanoreceptors. , 1973, Brain, behavior and evolution.

[171]  C. Hodge,et al.  Identification of functioning cortex using cortical optical imaging. , 1997, Neurosurgery.

[172]  Jochen F Staiger,et al.  Unique functional properties of somatostatin-expressing GABAergic neurons in mouse barrel cortex , 2012, Nature Neuroscience.

[173]  G. Buzsáki,et al.  Cortical Control of Zona Incerta , 2007, The Journal of Neuroscience.

[174]  David J. Anderson,et al.  Automated measurement of mouse social behaviors using depth sensing, video tracking, and machine learning , 2015, Proceedings of the National Academy of Sciences.

[175]  M. Diamond,et al.  Encoding of Whisker Vibration by Rat Barrel Cortex Neurons: Implications for Texture Discrimination , 2003, The Journal of Neuroscience.

[176]  M. Herkenham,et al.  New Perspectives on the Organization and Evolution of Nonspecific Thalamocortical Projections , 1986 .

[177]  B. McNaughton,et al.  Encoding of Tactile Context in the Mouse Visual Cortex , 2017 .

[178]  Zengcai V. Guo,et al.  Procedures for Behavioral Experiments in Head-Fixed Mice , 2014, PloS one.

[179]  E. White,et al.  Synapses made by axons of callosal projection neurons in mouse somatosensory cortex: Emphasis on intrinsic connections , 1991, The Journal of comparative neurology.

[180]  H. Barlow,et al.  Responses to single quanta of light in retinal ganglion cells of the cat. , 1971, Vision research.

[181]  M. Deschenes,et al.  Abolition of spindle oscillations in thalamic neurons disconnected from nucleus reticularis thalami. , 1985, Journal of neurophysiology.

[182]  V. Mountcastle,et al.  The sense of flutter-vibration: comparison of the human capacity with response patterns of mechanoreceptive afferents from the monkey hand. , 1968, Journal of neurophysiology.

[183]  W. Newsome,et al.  Estimates of the Contribution of Single Neurons to Perception Depend on Timescale and Noise Correlation , 2009, The Journal of Neuroscience.

[184]  D. Hubel,et al.  Sequence regularity and geometry of orientation columns in the monkey striate cortex , 1974, The Journal of comparative neurology.

[185]  M. Castro-Alamancos,et al.  Cortical sensory suppression during arousal is due to the activity‐dependent depression of thalamocortical synapses , 2002, The Journal of physiology.

[186]  C Baumgartner,et al.  Laminar analysis of extracellular field potentials in rat vibrissa/barrel cortex. , 1990, Journal of neurophysiology.

[187]  P. Barthó,et al.  Selective GABAergic innervation of thalamic nuclei from zona incerta , 2002, The European journal of neuroscience.

[188]  Rune W. Berg,et al.  Coherent electrical activity between vibrissa sensory areas of cerebellum and neocortex is enhanced during free whisking. , 2002, Journal of neurophysiology.

[189]  M. Deschenes,et al.  Feedforward Inhibition Determines the Angular Tuning of Vibrissal Responses in the Principal Trigeminal Nucleus , 2010, The Journal of Neuroscience.

[190]  M. Shipley,et al.  Response characteristics of single units in the rat's trigeminal nuclei to vibrissa displacements. , 1974, Journal of neurophysiology.

[191]  M. Deschenes,et al.  Parallel Streams for the Relay of Vibrissal Information through Thalamic Barreloids , 2000, The Journal of Neuroscience.

[192]  M F Jacquin,et al.  Differential Foci and Synaptic Organization of the Principal and Spinal Trigeminal Projections to the Thalamus in the Rat , 1994, The European journal of neuroscience.

[193]  C. Frassoni,et al.  GABAergic neurons are present in the dorsal column nuclei but not in the ventroposterior complex of rats , 1986, Brain Research.

[194]  R. Romo,et al.  Neuronal correlates of decision-making in secondary somatosensory cortex , 2002, Nature Neuroscience.

[195]  J. Movshon,et al.  A computational analysis of the relationship between neuronal and behavioral responses to visual motion , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[196]  M. Diamond,et al.  Behavioral study of whisker-mediated vibration sensation in rats , 2012, Proceedings of the National Academy of Sciences.

[197]  D. Simons,et al.  Circuit dynamics and coding strategies in rodent somatosensory cortex. , 2000, Journal of neurophysiology.

[198]  M. A. Friedman,et al.  Thalamo‐cortical processing of vibrissal information in the rat. I. Intracortical origins of surround but not centre‐receptive fields of layer IV neurones in the rat S1 barrel field cortex , 1991, The Journal of comparative neurology.

[199]  Martin Deschênes,et al.  Motor Cortex Gates Vibrissal Responses in a Thalamocortical Projection Pathway , 2007, Neuron.

[200]  Daniel C Millard,et al.  Detection of tactile inputs in the rat vibrissa pathway. , 2012, Journal of neurophysiology.

[201]  D. Simons,et al.  Thalamocortical response transformation in the rat vibrissa/barrel system. , 1989, Journal of neurophysiology.

[202]  J M Gibson,et al.  Quantitative studies of stimulus coding in first-order vibrissa afferents of rats. 1. Receptive field properties and threshold distributions. , 1983, Somatosensory research.

[203]  Bryan M. Hooks,et al.  Laminar Analysis of Excitatory Local Circuits in Vibrissal Motor and Sensory Cortical Areas , 2011, PLoS biology.

[204]  D. Feldmeyer Excitatory neuronal connectivity in the barrel cortex , 2012, Front. Neuroanat..

[205]  Y. Iwamura Hierarchical somatosensory processing , 1998, Current Opinion in Neurobiology.

[206]  M. Stryker,et al.  Modulation of Visual Responses by Behavioral State in Mouse Visual Cortex , 2010, Neuron.

[207]  O Fitzgerald,et al.  Discharges from the sensory organs of the cat's vibrissae and the modification in their activity by ions , 1940, The Journal of physiology.

[208]  David J. Heeger,et al.  Neuronal correlates of perception in early visual cortex , 2003, Nature Neuroscience.

[209]  E. Ahissar,et al.  Parallel Thalamic Pathways for Whisking and Touch Signals in the Rat , 2006, PLoS biology.

[210]  T. Gerdjikov,et al.  Discrimination of Vibrotactile Stimuli in the Rat Whisker System: Behavior and Neurometrics , 2010, Neuron.

[211]  L. Wineski Movements of the cranial vibrissae in the Golden hamster (Mesocricetus auratus) , 2009 .

[212]  W. Bialek,et al.  Time Course of Information about Motion Direction in Visual Area MT of Macaque Monkeys , 2004, The Journal of Neuroscience.

[213]  D. Simons,et al.  Response transformation and receptive-field synthesis in the lemniscal trigeminothalamic circuit. , 2003, Journal of neurophysiology.

[214]  Jochen F. Staiger,et al.  S1 Laminar Specialization , 2010 .

[215]  Yiannis Aloimonos,et al.  Active vision , 2004, International Journal of Computer Vision.

[216]  C. Clifford,et al.  Temporal cueing enhances neuronal and behavioral discrimination performance in rat whisker system. , 2019, Journal of neurophysiology.

[217]  Bert Sakmann,et al.  Sub‐ and suprathreshold receptive field properties of pyramidal neurones in layers 5A and 5B of rat somatosensory barrel cortex , 2004, The Journal of physiology.

[218]  Daniel J Simons,et al.  Response properties of whisker-associated trigeminothalamic neurons in rat nucleus principalis. , 2003, Journal of neurophysiology.

[219]  Ehsan Arabzadeh,et al.  Population Decoding in Rat Barrel Cortex: Optimizing the Linear Readout of Correlated Population Responses , 2014, PLoS Comput. Biol..

[220]  Mathew E. Diamond,et al.  Rats Generate Vibrissal Sensory Evidence until Boundary Crossing Triggers a Decision , 2019, Current Biology.

[221]  Vincent Jacob,et al.  Spatiotemporal characteristics of neuronal sensory integration in the barrel cortex of the rat. , 2005, Journal of neurophysiology.

[222]  Georg B. Keller,et al.  Sensorimotor Mismatch Signals in Primary Visual Cortex of the Behaving Mouse , 2012, Neuron.

[223]  F. Helmchen,et al.  Behaviour-dependent recruitment of long-range projection neurons in somatosensory cortex , 2013, Nature.

[224]  R. Romo,et al.  Neural codes for perceptual discrimination in primary somatosensory cortex , 2005, Nature Neuroscience.

[225]  M. Jacquin,et al.  Cell structure and response properties in the trigeminal subnucleus oralis. , 1990, Somatosensory & motor research.

[226]  M. Deschenes,et al.  Single- and Multi-Whisker Channels in the Ascending Projections from the Principal Trigeminal Nucleus in the Rat , 1999, The Journal of Neuroscience.

[227]  B. Munger,et al.  Degeneration and regeneration of peripheral nerve in the rat trigeminal system. I. Identification and characterization of the multiple afferent innervation of the mystacial vibrissae , 1986, The Journal of comparative neurology.

[228]  D. Simons,et al.  Responses of rat trigeminal ganglion neurons to movements of vibrissae in different directions. , 1990, Somatosensory & motor research.

[229]  F. Ebner,et al.  The role of GABA-mediated inhibition in the rat ventral posterior medial thalamus. I. Assessment of receptive field changes following thalamic reticular nucleus lesions. , 1994, Journal of neurophysiology.

[230]  M. Brecht,et al.  Functional architecture of the mystacial vibrissae , 1997, Behavioural Brain Research.

[231]  S. Buffer,et al.  Barreloids in adult rat thalamus: Three‐dimensional architecture and relationship to somatosensory cortical barrels , 1995, The Journal of comparative neurology.

[232]  E. Jones,et al.  The Barrel Cortex of Rodents , 1995, Cerebral Cortex.

[233]  H. Killackey,et al.  Patterning of local intracortical projections within the vibrissae representation of rat primary somatosensory cortex , 1995, The Journal of comparative neurology.

[234]  E. Arabzadeh,et al.  A comparison of neuronal and behavioral detection and discrimination performances in rat whisker system. , 2011, Journal of neurophysiology.

[235]  J. Bouyer,et al.  Fast somato-parietal rhythms during combined focal attention and immobility in baboon and squirrel monkey. , 1979, Electroencephalography and clinical neurophysiology.

[236]  K. H. Britten,et al.  Neuronal correlates of a perceptual decision , 1989, Nature.

[237]  J. Arvidsson Somatotopic organization of vibrissae afferents in the trigeminal sensorynuclei of the rat studied by transganglionic transport of HRP , 1982, The Journal of comparative neurology.

[238]  S. Nord,et al.  Somatotopic organization in the spinal trigeminal nucleus, the dorsal column nuclei and related structures in the rat , 1967, The Journal of comparative neurology.

[239]  J. Mitrofanis Some certainty for the “zone of uncertainty”? Exploring the function of the zona incerta , 2005, Neuroscience.

[240]  M. Diamond,et al.  Whisker sensory system – From receptor to decision , 2013, Progress in Neurobiology.

[241]  D. Simons Response properties of vibrissa units in rat SI somatosensory neocortex. , 1978, Journal of neurophysiology.

[243]  G. DeAngelis,et al.  Contribution of Middle Temporal Area to Coarse Depth Discrimination: Comparison of Neuronal and Psychophysical Sensitivity , 2003, The Journal of Neuroscience.

[244]  J. K. Harting,et al.  Studies of the principal sensory and spinal trigeminal nuclei of the rat: Projections to the superior colliculus, inferior olive, and cerebellum , 1983, The Journal of comparative neurology.

[245]  Wolfger von der Behrens,et al.  Novel two-alternative forced choice paradigm for bilateral vibrotactile whisker frequency discrimination in head-fixed mice and rats. , 2013, Journal of neurophysiology.

[246]  Wyeth Bair,et al.  Spatiotemporal Energy Models , 2014, Encyclopedia of Computational Neuroscience.

[247]  R. Romo,et al.  Neural correlate of subjective sensory experience gradually builds up across cortical areas , 2006, Proceedings of the National Academy of Sciences.

[248]  Per Magne Knutsen,et al.  Orthogonal coding of object location , 2009, Trends in Neurosciences.

[249]  Hiroyuki Kida,et al.  Similarity of direction tuning among responses to stimulation of different whiskers in neurons of rat barrel cortex. , 2005, Journal of neurophysiology.

[250]  M. Deschenes,et al.  Angular Tuning Bias of Vibrissa-Responsive Cells in the Paralemniscal Pathway , 2006, The Journal of Neuroscience.

[251]  W. Reichardt,et al.  Autocorrelation, a principle for the evaluation of sensory information by the central nervous system , 1961 .

[252]  B. Sakmann,et al.  ‐Dynamic representation of whisker deflection by synaptic potentials in spiny stellate and pyramidal cells in the barrels and septa of layer 4 rat somatosensory cortex , 2002, The Journal of physiology.

[253]  J. Poulet,et al.  Thalamic control of cortical states , 2012, Nature Neuroscience.

[254]  S. Shimegi,et al.  Physiological and Anatomical Organization of Multiwhisker Response Interactions in the Barrel Cortex of Rats , 2000, The Journal of Neuroscience.

[255]  V. Mountcastle,et al.  Detection thresholds for stimuli in humans and monkeys: comparison with threshold events in mechanoreceptive afferent nerve fibers innervating the monkey hand. , 1972, Journal of neurophysiology.

[256]  Karel Svoboda,et al.  Natural Whisker-Guided Behavior by Head-Fixed Mice in Tactile Virtual Reality , 2014, The Journal of Neuroscience.

[257]  J. Hahn,et al.  Stimulus—response relationships in first‐order sensory fibres from cat vibrissae , 1971, The Journal of physiology.

[258]  M. Deschenes,et al.  Septal neurons in barrel cortex derive their receptive field input from the lemniscal pathway , 2009, Neuroscience Research.

[259]  Vinzenz H. Schönfelder,et al.  Transformation of Perception from Sensory to Motor Cortex , 2017, Current Biology.

[260]  H. Killackey,et al.  Diencephalic projections of the subnucleus interpolaris of the brainstem trigeminal complex in the rat , 1980, Neuroscience.

[261]  James E. Skinner,et al.  Central Gating Mechanisms That Regulate Event-Related Potentials and Behavior , 1984 .

[262]  S. Nelson,et al.  Spatio-temporal subthreshold receptive fields in the vibrissa representation of rat primary somatosensory cortex. , 1998, Journal of neurophysiology.

[263]  R. Masterton,et al.  The sensory contribution of a single vibrissa's cortical barrel. , 1986, Journal of neurophysiology.

[264]  F. W. Kerr,et al.  SOMATOTOPIC ORGANIZATION OF TRIGEMINAL-GANGLION NEURONES. , 1964, Archives of neurology.

[265]  J. D. Bruin,et al.  Spatial delayed alternation of rats in a T-maze: effects of neurotoxic lesions of the medial prefrontal cortex and of T-maze rotations , 1997, Behavioural Brain Research.

[266]  T A Woolsey,et al.  Axonal trajectories between mouse somatosensory thalamus and cortex , 1987, The Journal of comparative neurology.

[267]  T. Wiesel,et al.  Functional architecture of cortex revealed by optical imaging of intrinsic signals , 1986, Nature.

[268]  R. Romo,et al.  Sensing without Touching Psychophysical Performance Based on Cortical Microstimulation , 2000, Neuron.

[269]  Hiroshi Shibasaki,et al.  Attention modulates both primary and second somatosensory cortical activities in humans: a magnetoencephalographic study. , 1998, Journal of neurophysiology.

[270]  D. Simons,et al.  Task- and subject-related differences in sensorimotor behavior during active touch. , 1995, Somatosensory & motor research.

[271]  Howard Eichenbaum,et al.  Reexamination of functional subdivisions of the rodent prefrontal cortex , 1983, Experimental Neurology.

[272]  Ben Mitchinson,et al.  Feedback control in active sensing: rat exploratory whisking is modulated by environmental contact , 2007, Proceedings of the Royal Society B: Biological Sciences.

[273]  R. Dykes Afferent fibers from mystacial vibrissae of cats and seals. , 1975, Journal of neurophysiology.

[274]  S Murray Sherman,et al.  Different topography of the reticulothalmic inputs to first- and higher-order somatosensory thalamic relays revealed using photostimulation. , 2007, Journal of neurophysiology.

[275]  Sooyoung Chung,et al.  Highly ordered arrangement of single neurons in orientation pinwheels , 2006, Nature.

[276]  Vincent Jacob,et al.  Emergent Properties of Tactile Scenes Selectively Activate Barrel Cortex Neurons , 2008, Neuron.

[277]  A. R. Muir,et al.  The structure and function of a slowly adapting touch corpuscle in hairy skin , 1969, The Journal of physiology.

[278]  Colin W G Clifford,et al.  Informational Basis of Sensory Adaptation: Entropy and Single-Spike Efficiency in Rat Barrel Cortex , 2013, The Journal of Neuroscience.

[279]  T. Prescott,et al.  Active touch sensing in the rat: anticipatory and regulatory control of whisker movements during surface exploration. , 2009, Journal of neurophysiology.

[280]  R. W. Schaeffer,et al.  Licking Rates in Infant Albino Rats , 1961, Science.

[281]  Amiram Grinvald,et al.  Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns , 1991, Nature.

[282]  J. Bouyer,et al.  Fast fronto-parietal rhythms during combined focused attentive behaviour and immobility in cat: cortical and thalamic localizations. , 1981, Electroencephalography and clinical neurophysiology.

[283]  C. Petersen The Functional Organization of the Barrel Cortex , 2007, Neuron.

[284]  D. Pinault The thalamic reticular nucleus: structure, function and concept , 2004, Brain Research Reviews.

[285]  L. Wineski Facial morphology and vibrissal movement in the golden hamster , 1985, Journal of morphology.

[286]  David Kleinfeld,et al.  Active sensation: insights from the rodent vibrissa sensorimotor system , 2006, Current Opinion in Neurobiology.

[287]  M. Deschenes,et al.  A Map of Angular Tuning Preference in Thalamic Barreloids , 2003, The Journal of Neuroscience.

[288]  Carl C. H. Petersen,et al.  Diverse Long-Range Axonal Projections of Excitatory Layer 2/3 Neurons in Mouse Barrel Cortex , 2018, Front. Neuroanat..

[289]  E. Audinat,et al.  Afferent connections of the medial frontal cortex of the rat. II. Cortical and subcortical afferents , 1995, The Journal of comparative neurology.

[290]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[291]  Colin W G Clifford,et al.  Adaptation Improves Neural Coding Efficiency Despite Increasing Correlations in Variability , 2013, The Journal of Neuroscience.

[292]  J. Mitrofanis,et al.  Organisation of the cortical projection to the zona incerta of the thalamus , 1999, The Journal of comparative neurology.

[293]  Michael M. Halassa,et al.  Selective optical drive of thalamic reticular nucleus generates thalamic bursts & cortical spindles , 2011, Nature Neuroscience.

[294]  J. Mitrofanis,et al.  Patterns of connections between zona incerta and brainstem in rats , 1998, The Journal of comparative neurology.

[295]  Marcel Oberlaender,et al.  Cell Type-Specific Structural Organization of the Six Layers in Rat Barrel Cortex , 2017, Front. Neuroanat..

[296]  M. Armstrong‐James,et al.  Spatiotemporal convergence and divergence in the rat S1 “Barrel” cortex , 1987, The Journal of comparative neurology.

[297]  R. Passingham The hippocampus as a cognitive map J. O'Keefe & L. Nadel, Oxford University Press, Oxford (1978). 570 pp., £25.00 , 1979, Neuroscience.

[298]  Per Magne Knutsen,et al.  Haptic Object Localization in the Vibrissal System: Behavior and Performance , 2006, The Journal of Neuroscience.

[299]  Rebecca A. Mease,et al.  Organization and somatotopy of corticothalamic projections from L5B in mouse barrel cortex , 2017, Proceedings of the National Academy of Sciences.

[300]  M. Diamond,et al.  Whisker-Mediated Texture Discrimination , 2008, PLoS biology.

[301]  R. Kötter,et al.  Layer-Specific Intracolumnar and Transcolumnar Functional Connectivity of Layer V Pyramidal Cells in Rat Barrel Cortex , 2001, The Journal of Neuroscience.

[302]  Haruhide Hayashi,et al.  Distributions of vibrissae afferent fiber collaterals in the trigeminal nuclei as revealed by intra-axonal injection of horseradish peroxidase , 1980, Brain Research.

[303]  Gregory Telian,et al.  Short Time-Scale Sensory Coding in S1 during Discrimination of Whisker Vibrotactile Sequences , 2016, PLoS biology.

[304]  E Ahissar,et al.  Size gradients of barreloids in the rat thalamus , 2001, The Journal of comparative neurology.

[305]  J. Olavarria,et al.  Areal and laminar organization of corticocortical projections in the rat somatosensory cortex , 1990, The Journal of comparative neurology.

[306]  Celine Mateo,et al.  Motor Control by Sensory Cortex , 2010, Science.

[307]  Miguel A. L. Nicolelis,et al.  Somatotopic maps within the zona incerta relay parallel GABAergic somatosensory pathways to the neocortex, superior colliculus, and brainstem , 1992, Brain Research.

[308]  R. Rhoades,et al.  Effects of cortical and thalamic lesions upon primary afferent terminations, distributions of projection neurons, and the cytochrome oxidase pattern in the trigeminal brainstem complex , 1991, The Journal of comparative neurology.

[309]  M. Nicolelis,et al.  Behavioral Properties of the Trigeminal Somatosensory System in Rats Performing Whisker-Dependent Tactile Discriminations , 2001, The Journal of Neuroscience.

[310]  J. Feldman,et al.  Facing the challenge of mammalian neural microcircuits: taking a few breaths may help , 2015, The Journal of physiology.

[311]  M. Andermann,et al.  A somatotopic map of vibrissa motion direction within a barrel column , 2006, Nature Neuroscience.

[312]  M. Deschenes,et al.  Dendroarchitecture of Relay Cells in Thalamic Barreloids: A Substrate for Cross-Whisker Modulation , 2002, The Journal of Neuroscience.

[313]  F. Ebner,et al.  Barrels and septa: Separate circuits in rat barrel field cortex , 1999, The Journal of comparative neurology.

[314]  M. Jacquin,et al.  Parvalbumin and calbindin immunocytochemistry reveal functionally distinct cell groups and vibrissa‐related patterns in the trigeminal brainstem complex of the adult rat , 1992, The Journal of comparative neurology.

[315]  L. Kruger,et al.  The organization of thalamocortical relay neurons in the rat ventrobasal complex studied by the retrograde transport of horseradish peroxidase , 1977, The Journal of comparative neurology.

[316]  W. Montagna,et al.  The tactile hair follicles in the mouse , 1953, The Anatomical record.

[317]  M. Deschenes,et al.  Thalamic projections from the whisker‐sensitive regions of the spinal trigeminal complex in the rat , 2000, The Journal of comparative neurology.

[318]  B. Stein,et al.  The organization of trigeminotectal and trigeminothalamic neurons in rodents: A double‐labeling study with fluorescent dyes , 1987, The Journal of comparative neurology.

[319]  N. Wittenburg,et al.  Transformation from temporal to rate coding in a somatosensory thalamocortical pathway , .

[320]  Byron M. Yu,et al.  Neural Variability in Premotor Cortex Provides a Signature of Motor Preparation , 2006, The Journal of Neuroscience.

[321]  E. Ahissar,et al.  Encoding of Vibrissal Active Touch , 2003, Neuron.

[322]  Diego Contreras,et al.  Synaptic Responses to Whisker Deflections in Rat Barrel Cortex as a Function of Cortical Layer and Stimulus Intensity , 2004, The Journal of Neuroscience.

[323]  C. Petersen,et al.  Membrane Potential Dynamics of GABAergic Neurons in the Barrel Cortex of Behaving Mice , 2010, Neuron.

[324]  A. Shosaku A comparison of receptive field properties of vibrissa neurons between the rat thalamic reticular and ventro-basal nuclei , 1985, Brain Research.

[325]  D. Shulz,et al.  Spatial structure of multiwhisker receptive fields in the barrel cortex is stimulus dependent. , 2011, Journal of neurophysiology.

[326]  M. Diamond Somatosensory Thalamus of the Rat , 1995 .

[327]  M. Diamond,et al.  Whisker Vibration Information Carried by Rat Barrel Cortex Neurons , 2004, The Journal of Neuroscience.

[328]  B. Connors,et al.  Thalamocortical responses of mouse somatosensory (barrel) cortexin vitro , 1991, Neuroscience.

[329]  C. Petersen,et al.  Visualizing the Cortical Representation of Whisker Touch: Voltage-Sensitive Dye Imaging in Freely Moving Mice , 2006, Neuron.

[330]  Asaf Keller,et al.  Reducing the Uncertainty: Gating of Peripheral Inputs by Zona Incerta , 2004, The Journal of Neuroscience.

[331]  Randy M Bruno,et al.  Feedforward Mechanisms of Excitatory and Inhibitory Cortical Receptive Fields , 2002, The Journal of Neuroscience.

[332]  D. Simons,et al.  Thalamocortical Angular Tuning Domains within Individual Barrels of Rat Somatosensory Cortex , 2003, The Journal of Neuroscience.

[333]  M. Diamond,et al.  Sensory Prioritization in Rats: Behavioral Performance and Neuronal Correlates , 2016, The Journal of Neuroscience.

[334]  M. G. Terenzi,et al.  Efferent connections from the anterior pretectal nucleus to the diencephalon and mesencephalon in the rat , 1995, Brain Research.

[335]  Per Magne Knutsen,et al.  Object localization with whiskers , 2008, Biological Cybernetics.

[336]  Dieter Jaeger,et al.  Parallel pathways from whisker and visual sensory cortices to distinct frontal regions of mouse neocortex , 2016, Neurophotonics.

[337]  C. Clifford,et al.  Sampling Time and Performance in Rat Whisker Sensory System , 2014, PloS one.

[338]  B. Cragg,et al.  The peripheral and central changes resulting from cutting or crushing the afferent nerve supply to the whiskers , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[339]  J. Karhu,et al.  Simultaneous early processing of sensory input in human primary (SI) and secondary (SII) somatosensory cortices. , 1999, Journal of neurophysiology.

[340]  P. Ma The barrelettes—architectonic vibrissal representations in the brainstem trigeminal complex of the mouse. Normal structural organization , 1991 .

[341]  M. Ito Processing of vibrissa sensory information within the rat neocortex. , 1985, Journal of neurophysiology.

[342]  Zengcai V. Guo,et al.  Flow of Cortical Activity Underlying a Tactile Decision in Mice , 2014, Neuron.

[343]  J. O’Keefe,et al.  Hippocampal place units in the freely moving rat: Why they fire where they fire , 1978, Experimental Brain Research.

[344]  M. Diamond,et al.  Neuronal Encoding of Texture in the Whisker Sensory Pathway , 2005, PLoS biology.

[345]  R. Lin,et al.  Thalamic afferents of the rat barrel cortex: a light- and electron-microscopic study using Phaseolus vulgaris leucoagglutinin as an anterograde tracer. , 1993, Somatosensory & motor research.

[346]  Shane R. Crandall,et al.  Infrabarrels Are Layer 6 Circuit Modules in the Barrel Cortex that Link Long-Range Inputs and Outputs. , 2017, Cell reports.

[347]  Andrew M. Clark,et al.  Stimulus onset quenches neural variability: a widespread cortical phenomenon , 2010, Nature Neuroscience.

[348]  M. Jacquin,et al.  What Makes Subcortical Barrels , 1995 .

[349]  A. Iggo,et al.  Functional characteristics of mechanoreceptors in sinus hair follicles of the cat , 1973, The Journal of physiology.

[350]  Martin Deschênes,et al.  Feedforward Inhibitory Control of Sensory Information in Higher-Order Thalamic Nuclei , 2005, The Journal of Neuroscience.

[351]  H. van der Loos,et al.  Barreloids in mouse somatosensory thalamus. , 1976, Neuroscience letters.

[352]  F. Helmchen,et al.  Neocortical Dynamics During Whisker-Based Sensory Discrimination in Head-Restrained Mice , 2018, Neuroscience.

[353]  Kevin D. Alloway,et al.  Quantitative comparisons of corticothalamic topography within the ventrobasal complex and the posterior nucleus of the rodent thalamus , 2003, Brain Research.

[354]  S. H. Hulse,et al.  One-drop licking in rats. , 1968, Journal of comparative and physiological psychology.

[355]  Daniel H. O'Connor,et al.  Organization of Orientation-Specific Whisker Deflection Responses in Layer 2/3 of Mouse Somatosensory Cortex , 2018, Neuroscience.

[356]  T. Woolsey,et al.  Effects of neonatal whisker lesions on mouse central trigeminal pathways , 1984, The Journal of comparative neurology.

[357]  G. Blasdel,et al.  Voltage-sensitive dyes reveal a modular organization in monkey striate cortex , 1986, Nature.

[358]  M. Jacquin,et al.  Structure and function of barrel 'precursor' cells in trigeminal nucleus principalis. , 1988, Brain research.

[359]  A. Keller,et al.  Response properties of whisker-related neurons in rat second somatosensory cortex. , 2004, Journal of neurophysiology.

[360]  L. Kruger,et al.  Projections of the rat trigeminal sensory nuclear complex demonstrated by multiple fluorescent dye retrograde transport , 1985, Brain Research.

[361]  T. A. Woolsey,et al.  Local axonal trajectories in mouse barrel cortex , 2004, Experimental Brain Research.

[362]  Michael A Long,et al.  Electrical Synapses in the Thalamic Reticular Nucleus , 2002, The Journal of Neuroscience.

[363]  A. Keller,et al.  Consistency of angular tuning in the rat vibrissa system. , 2010, Journal of neurophysiology.

[364]  David Kleinfeld,et al.  Sniffing and whisking in rodents , 2012, Current Opinion in Neurobiology.

[365]  M. Deschenes,et al.  The Axonal Arborization of Single Thalamic Reticular Neurons in the Somatosensory Thalamus of the Rat , 1995, The European journal of neuroscience.

[366]  S. B. Vincent,et al.  The tactile hair of the white rat , 1913 .

[367]  J. O’Keefe Place units in the hippocampus of the freely moving rat , 1976, Experimental Neurology.

[368]  M. Jacquin,et al.  Morphology, response properties, and collateral projections of trigeminothalamic neurons in brainstem subnucleus interpolaris of rat , 2004, Experimental Brain Research.

[369]  D. Simons,et al.  Somatotopic organization of the second somatosensory area (SII) in the cerebral cortex of the mouse. , 1986, Somatosensory research.

[370]  R. M. Harris,et al.  Morphology of physiologically identified thalamocortical relay neurons in the rat ventrobasal thalamus , 1986, The Journal of comparative neurology.

[371]  D. Kleinfeld,et al.  Active Spatial Perception in the Vibrissa Scanning Sensorimotor System , 2007, PLoS biology.

[372]  W. Welker Analysis of Sniffing of the Albino Rat 1) , 1964 .

[373]  D. Simons,et al.  High responsiveness and direction sensitivity of neurons in the rat thalamic reticular nucleus to vibrissa deflections. , 2000, Journal of neurophysiology.

[374]  D. Contreras,et al.  Dynamics of excitation and inhibition underlying stimulus selectivity in rat somatosensory cortex , 2005, Nature Neuroscience.

[375]  E. Welker,et al.  Organization of the projections from barrel cortex to thalamus in mice studied with Phaseolus vulgaris-leucoagglutinin and HRP , 2004, Experimental Brain Research.

[376]  D. Kleinfeld,et al.  Phase-to-rate transformations encode touch in cortical neurons of a scanning sensorimotor system , 2009, Nature Neuroscience.

[377]  Bert Sakmann,et al.  Monosynaptic Connections between Pairs of Spiny Stellate Cells in Layer 4 and Pyramidal Cells in Layer 5A Indicate That Lemniscal and Paralemniscal Afferent Pathways Converge in the Infragranular Somatosensory Cortex , 2005, The Journal of Neuroscience.

[378]  C. Petersen,et al.  The Excitatory Neuronal Network of the C2 Barrel Column in Mouse Primary Somatosensory Cortex , 2009, Neuron.

[379]  Martin Deschênes,et al.  A New Thalamic Pathway of Vibrissal Information Modulated by the Motor Cortex , 2007, The Journal of Neuroscience.

[380]  B. Sakmann,et al.  Dynamic Receptive Fields of Reconstructed Pyramidal Cells in Layers 3 and 2 of Rat Somatosensory Barrel Cortex , 2003, The Journal of physiology.

[381]  C. Welker Microelectrode delineation of fine grain somatotopic organization of (SmI) cerebral neocortex in albino rat. , 1971, Brain research.

[382]  A. Treves,et al.  Hippocampal remapping and grid realignment in entorhinal cortex , 2007, Nature.

[383]  M. Glickstein,et al.  Whiskers, barrels, and cortical efferent pathways in gap crossing by rats. , 2000, Journal of neurophysiology.

[384]  W. Welker,et al.  Coding of somatic sensory input by vibrissae neurons in the rat's trigeminal ganglion. , 1969, Brain research.