Constructing the Exact Voronoi Diagram of Arbitrary Lines in Three-Dimensional Space - with Fast Point-Location

We introduce a new, efficient, and complete algorithm, and its exact implementation, to compute the Voronoi diagram of lines in space. This is a major milestone towards the robust construction of the Voronoi diagram of polyhedra. As we follow the exact geometric-computation paradigm, it is guaranteed that we always compute the mathematically correct result. The algorithm is complete in the sense that it can handle all configurations, in particular all degenerate ones. The algorithm requires O(n 3 + e ) time and space, where n is the number of lines. The Voronoi diagram is represented by a data structure that permits answering point-location queries in O(log2 n) expected time. The implementation employs the Cgal packages for constructing arrangements and lower envelopes together with advanced algebraic tools.

[1]  Mariette Yvinec,et al.  Dynamic Additively Weighted Voronoi Diagrams in 2D , 2002, ESA.

[2]  Micha Sharir,et al.  The overlay of lower envelopes and its applications , 1996, Discret. Comput. Geom..

[3]  Jur P. van den Berg,et al.  The visibility-Voronoi complex and its applications , 2007, Comput. Geom..

[4]  Ioannis Z. Emiris,et al.  The predicates for the Voronoi diagram of ellipses , 2006, SCG '06.

[5]  Micha Sharir,et al.  3-Dimensional Euclidean Voronoi Diagrams of Lines with a Fixed Number of Orientations , 2003, SIAM J. Comput..

[6]  Dinesh Manocha,et al.  Exact computation of the medial axis of a polyhedron , 2004, Comput. Aided Geom. Des..

[7]  Ioannis Z. Emiris,et al.  The predicates of the Apollonius diagram: Algorithmic analysis and implementation , 2006, Comput. Geom..

[8]  Jean-Daniel Boissonnat,et al.  Effective computational geometry for curves and surfaces , 2006 .

[9]  Olivier Devillers Improved incremental randomized Delaunay triangulation , 1998, SCG '98.

[10]  Hazel Everett,et al.  The Voronoi diagram of three arbitrary lines in R3 , 2009 .

[11]  Michael Kerber,et al.  A generic algebraic kernel for non-linear geometric applications , 2011, SoCG '11.

[12]  Elmar Schömer,et al.  A complete, exact and efficient implementation for computing the edge-adjacency graph of an arrangement of quadrics , 2011, J. Symb. Comput..

[13]  Michael Hoffmann,et al.  Algorithms - ESA 2007, 15th Annual European Symposium, Eilat, Israel, October 8-10, 2007, Proceedings , 2007, ESA.

[14]  Jean-Daniel Boissonnat,et al.  Convex Hull and Voronoi Diagram of Additively Weighted Points , 2005, ESA.

[15]  Dan Halperin,et al.  Approximating the pathway axis and the persistence diagram of a collection of balls in 3-space , 2008, SCG '08.

[16]  Victor J. Milenkovic,et al.  Robust Construction of the Voronoi Diagram of a Polyhedron , 1993, CCCG.

[17]  R. Brubaker Models for the perception of speech and visual form: Weiant Wathen-Dunn, ed.: Cambridge, Mass., The M.I.T. Press, I–X, 470 pages , 1968 .

[18]  Stefano Leonardi,et al.  Algorithms - ESA 2005, 13th Annual European Symposium, Palma de Mallorca, Spain, October 3-6, 2005, Proceedings , 2005, ESA.

[19]  Micha Sharir Almost tight upper bounds for lower envelopes in higher dimensions , 1994, Discret. Comput. Geom..

[20]  Ketan Mulmuley,et al.  A fast planar partition algorithm. I , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[21]  Chee Yap,et al.  The exact computation paradigm , 1995 .

[22]  Elmar Schömer,et al.  An Exact, Complete and Efficient Implementation for Computing Planar Maps of Quadric Intersection Curves * , 2005 .

[23]  Luc Devroye,et al.  Expected time analysis for Delaunay point location , 2004, Comput. Geom..

[24]  Dan Halperin,et al.  An experimental study of point location in planar arrangements in CGAL , 2009, JEAL.

[25]  D. Du,et al.  Computing in Euclidean Geometry: (2nd Edition) , 1995 .

[26]  Raimund Seidel,et al.  Voronoi diagrams and arrangements , 1986, Discret. Comput. Geom..

[27]  Micha Sharir,et al.  Constructing Two-Dimensional Voronoi Diagrams via Divide-and-Conquer of Envelopes in Space , 2009, 2009 Sixth International Symposium on Voronoi Diagrams.

[28]  Joachim von zur Gathen,et al.  Modern Computer Algebra , 1998 .

[29]  J. Boissonnat,et al.  Effective Computational Geometry for Curves and Surfaces (Mathematics and Visualization) , 2006 .

[30]  Pascal Frey,et al.  MEDIT : An interactive Mesh visualization Software , 2001 .

[31]  Hazel Everett,et al.  The Voronoi Diagram of Three Lines , 2007, SCG '07.

[32]  Deok-Soo Kim,et al.  The beta-Shape and beta-Complex for Analysis of Molecular Structures , 2008, Generalized Voronoi Diagram.

[33]  Elmar Schömer,et al.  Complete, Exact and Efficient Implementation for Computing the Adjacency Graph of an Arrangement of Quadrics , 2007, ESA.

[34]  Franz Aurenhammer,et al.  Voronoi Diagrams , 2000, Handbook of Computational Geometry.

[35]  Gershon Elber,et al.  Computing the Voronoi cells of planes, spheres and cylinders in R2 , 2009, Comput. Aided Geom. Des..

[36]  Marina L. Gavrilova,et al.  Generalized Voronoi Diagram: A Geometry-Based Approach to Computational Intelligence , 2008, Generalized Voronoi Diagram.