Constructing the Exact Voronoi Diagram of Arbitrary Lines in Three-Dimensional Space - with Fast Point-Location
暂无分享,去创建一个
Dan Halperin | Michael Hemmer | Ophir Setter | D. Halperin | M. Hemmer | Ophir Setter | Michael Hemmer | Dan Halperin
[1] Mariette Yvinec,et al. Dynamic Additively Weighted Voronoi Diagrams in 2D , 2002, ESA.
[2] Micha Sharir,et al. The overlay of lower envelopes and its applications , 1996, Discret. Comput. Geom..
[3] Jur P. van den Berg,et al. The visibility-Voronoi complex and its applications , 2007, Comput. Geom..
[4] Ioannis Z. Emiris,et al. The predicates for the Voronoi diagram of ellipses , 2006, SCG '06.
[5] Micha Sharir,et al. 3-Dimensional Euclidean Voronoi Diagrams of Lines with a Fixed Number of Orientations , 2003, SIAM J. Comput..
[6] Dinesh Manocha,et al. Exact computation of the medial axis of a polyhedron , 2004, Comput. Aided Geom. Des..
[7] Ioannis Z. Emiris,et al. The predicates of the Apollonius diagram: Algorithmic analysis and implementation , 2006, Comput. Geom..
[8] Jean-Daniel Boissonnat,et al. Effective computational geometry for curves and surfaces , 2006 .
[9] Olivier Devillers. Improved incremental randomized Delaunay triangulation , 1998, SCG '98.
[10] Hazel Everett,et al. The Voronoi diagram of three arbitrary lines in R3 , 2009 .
[11] Michael Kerber,et al. A generic algebraic kernel for non-linear geometric applications , 2011, SoCG '11.
[12] Elmar Schömer,et al. A complete, exact and efficient implementation for computing the edge-adjacency graph of an arrangement of quadrics , 2011, J. Symb. Comput..
[13] Michael Hoffmann,et al. Algorithms - ESA 2007, 15th Annual European Symposium, Eilat, Israel, October 8-10, 2007, Proceedings , 2007, ESA.
[14] Jean-Daniel Boissonnat,et al. Convex Hull and Voronoi Diagram of Additively Weighted Points , 2005, ESA.
[15] Dan Halperin,et al. Approximating the pathway axis and the persistence diagram of a collection of balls in 3-space , 2008, SCG '08.
[16] Victor J. Milenkovic,et al. Robust Construction of the Voronoi Diagram of a Polyhedron , 1993, CCCG.
[17] R. Brubaker. Models for the perception of speech and visual form: Weiant Wathen-Dunn, ed.: Cambridge, Mass., The M.I.T. Press, I–X, 470 pages , 1968 .
[18] Stefano Leonardi,et al. Algorithms - ESA 2005, 13th Annual European Symposium, Palma de Mallorca, Spain, October 3-6, 2005, Proceedings , 2005, ESA.
[19] Micha Sharir. Almost tight upper bounds for lower envelopes in higher dimensions , 1994, Discret. Comput. Geom..
[20] Ketan Mulmuley,et al. A fast planar partition algorithm. I , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.
[21] Chee Yap,et al. The exact computation paradigm , 1995 .
[22] Elmar Schömer,et al. An Exact, Complete and Efficient Implementation for Computing Planar Maps of Quadric Intersection Curves * , 2005 .
[23] Luc Devroye,et al. Expected time analysis for Delaunay point location , 2004, Comput. Geom..
[24] Dan Halperin,et al. An experimental study of point location in planar arrangements in CGAL , 2009, JEAL.
[25] D. Du,et al. Computing in Euclidean Geometry: (2nd Edition) , 1995 .
[26] Raimund Seidel,et al. Voronoi diagrams and arrangements , 1986, Discret. Comput. Geom..
[27] Micha Sharir,et al. Constructing Two-Dimensional Voronoi Diagrams via Divide-and-Conquer of Envelopes in Space , 2009, 2009 Sixth International Symposium on Voronoi Diagrams.
[28] Joachim von zur Gathen,et al. Modern Computer Algebra , 1998 .
[29] J. Boissonnat,et al. Effective Computational Geometry for Curves and Surfaces (Mathematics and Visualization) , 2006 .
[30] Pascal Frey,et al. MEDIT : An interactive Mesh visualization Software , 2001 .
[31] Hazel Everett,et al. The Voronoi Diagram of Three Lines , 2007, SCG '07.
[32] Deok-Soo Kim,et al. The beta-Shape and beta-Complex for Analysis of Molecular Structures , 2008, Generalized Voronoi Diagram.
[33] Elmar Schömer,et al. Complete, Exact and Efficient Implementation for Computing the Adjacency Graph of an Arrangement of Quadrics , 2007, ESA.
[34] Franz Aurenhammer,et al. Voronoi Diagrams , 2000, Handbook of Computational Geometry.
[35] Gershon Elber,et al. Computing the Voronoi cells of planes, spheres and cylinders in R2 , 2009, Comput. Aided Geom. Des..
[36] Marina L. Gavrilova,et al. Generalized Voronoi Diagram: A Geometry-Based Approach to Computational Intelligence , 2008, Generalized Voronoi Diagram.