Registration and Deformation of 3D Shape Data through Parameterized Formulation

In this paper, we investigate conventional registration implementation, consisting of rotation and translation, to design the most precise registration so as to accurately restore the 3D shape of an object. To achieve the most accurate registration, our registration implementation needs robustness against data noise, or initial pose and position of data. To verify the accuracy of our implemented registration, we compare the registration behavior with the registration behavior of conventional methods, and evaluate the numerical accuracy of transformation parameter obtained by our registration. However, registration by rigid-body transformation is not enough for modeling and shape comparison: registration with deformation is needed. In this paper, we extend our robust registration to simultaneously estimate the shape parameter as well as the rigid-body transformation parameter. This extension method assumes that the deformation is formulated strictly from the deformation mechanism. We additionally introduce the applications of our extension method.

[1]  Nicholas Ayache,et al.  Medical image registration using geometric hashing , 1997 .

[2]  Chia-Ling Tsai,et al.  A View-Based Approach to Registration: Theory and Application to Vascular Image Registration , 2003, IPMI.

[3]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Laurent D. Cohen,et al.  A Parametric Deformable Model to Fit Unstructured 3D Data , 1998, Comput. Vis. Image Underst..

[5]  Martin D. Levine,et al.  Registering Multiview Range Data to Create 3D Computer Objects , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Kari Pulli,et al.  Multiview registration for large data sets , 1999, Second International Conference on 3-D Digital Imaging and Modeling (Cat. No.PR00062).

[7]  Katsushi Ikeuchi,et al.  Sensor Modeling, Probabilistic Hypothesis Generation, and Robust Localization for Object Recognition , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Li Zhang,et al.  Generating a 3D model of a Bayon tower using non-metric imagery , 2001 .

[9]  Naokazu Yokoya,et al.  A Robust Method for Registration and Segmentation of Multiple Range Images , 1995, Comput. Vis. Image Underst..

[10]  Takeo Kanade,et al.  Fast and accurate shape-based registration , 1996 .

[11]  Zhengyou Zhang,et al.  Iterative point matching for registration of free-form curves and surfaces , 1994, International Journal of Computer Vision.

[12]  Guy Godin,et al.  Recursive model optimization using ICP and free moving 3D data acquisition , 2003, Fourth International Conference on 3-D Digital Imaging and Modeling, 2003. 3DIM 2003. Proceedings..

[13]  Marc Levoy,et al.  Zippered polygon meshes from range images , 1994, SIGGRAPH.

[14]  Atsushi Nakazawa,et al.  Fast simultaneous alignment of multiple range images using index images , 2005, Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05).

[15]  Richard Szeliski,et al.  Matching 3-D anatomical surfaces with non-rigid deformations using octree-splines , 1993, Proceedings of IEEE Workshop on Biomedical Image Analysis.

[16]  Marc Levoy,et al.  Efficient variants of the ICP algorithm , 2001, Proceedings Third International Conference on 3-D Digital Imaging and Modeling.

[17]  Katsushi Ikeuchi,et al.  Effective nearest neighbor search for aligning and merging range images , 2003, Fourth International Conference on 3-D Digital Imaging and Modeling, 2003. 3DIM 2003. Proceedings..

[18]  Elijah Polak,et al.  Computational methods in optimization , 1971 .

[19]  Peter Johannes Neugebauer,et al.  Geometrical cloning of 3D objects via simultaneous registration of multiple range images , 1997, Proceedings of 1997 International Conference on Shape Modeling and Applications.

[20]  Mads Nielsen,et al.  Non-rigid Registration by Geometry-Constrained Diffusion , 1999, MICCAI.

[21]  Gérard G. Medioni,et al.  Object modelling by registration of multiple range images , 1992, Image Vis. Comput..

[22]  David A. H. Jacobs,et al.  The State of the Art in Numerical Analysis. , 1978 .

[23]  Jacques Feldmar,et al.  Rigid and Affine Registration of Smooth Surfaces using Differential Properties , 1994, ECCV.

[24]  Koji Kajiwara,et al.  Ground Truth Measurement System Using RC Helicopter , 1999 .

[25]  Takeshi Masuda,et al.  Registration and Integration of Multiple Range Images by Matching Signed Distance Fields for Object Shape Modeling , 2002, Comput. Vis. Image Underst..

[26]  Katsushi Ikeuchi,et al.  Simultaneous determination of registration and deformation parameters among 3D range images , 2005, Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05).

[27]  Marc Rioux,et al.  Direct Estimation of Range Flow on Deformable Shape From a Video Rate Range Camera , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  J. Stoer,et al.  Introduction to Numerical Analysis , 2002 .

[29]  Mark D. Wheeler,et al.  Automatic Modeling and Localization for Object Recognition , 1996 .

[30]  Andrew E. Johnson,et al.  Registration and integration of textured 3-D data , 1997, Proceedings. International Conference on Recent Advances in 3-D Digital Imaging and Modeling (Cat. No.97TB100134).

[31]  K. Ikeuchi,et al.  Robust Simultaneous Registration of Multiple Range Images , 2008 .