Ant colony optimization theory: A survey

Research on a new metaheuristic for optimization is often initially focused on proof-of-concept applications. It is only after experimental work has shown the practical interest of the method that researchers try to deepen their understanding of the method's functioning not only through more and more sophisticated experiments but also by means of an effort to build a theory. Tackling questions such as "how and why the method works" is important, because finding an answer may help in improving its applicability. Ant colony optimization, which was introduced in the early 1990s as a novel technique for solving hard combinatorial optimization problems, finds itself currently at this point of its life cycle. With this article we provide a survey on theoretical results on ant colony optimization. First, we review some convergence results. Then we discuss relations between ant colony optimization algorithms and other approximate methods for optimization. Finally, we focus on some research efforts directed at gaining a deeper understanding of the behavior of ant colony optimization algorithms. Throughout the paper we identify some open questions with a certain interest of being solved in the near future.

[1]  Mauro Birattari,et al.  Updating ACO Pheromones Using Stochastic Gradient Ascent and Cross-Entropy Methods , 2002, EvoWorkshops.

[2]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[3]  Thomas Stützle,et al.  An Ant Approach to the Flow Shop Problem , 1998 .

[4]  D. E. Goldberg,et al.  Simple Genetic Algorithms and the Minimal, Deceptive Problem , 1987 .

[5]  W. Gutjahr A GENERALIZED CONVERGENCE RESULT FOR THE GRAPH-BASED ANT SYSTEM METAHEURISTIC , 2003, Probability in the Engineering and Informational Sciences.

[6]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[7]  Thomas Stützle,et al.  MAX-MIN Ant System , 2000, Future Gener. Comput. Syst..

[8]  Terry Jones,et al.  Fitness Distance Correlation as a Measure of Problem Difficulty for Genetic Algorithms , 1995, ICGA.

[9]  Luca Maria Gambardella,et al.  Ant colony system: a cooperative learning approach to the traveling salesman problem , 1997, IEEE Trans. Evol. Comput..

[10]  Charles E. Taylor Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. Complex Adaptive Systems.John H. Holland , 1994 .

[11]  Julian F. Miller,et al.  Genetic and Evolutionary Computation — GECCO 2003 , 2003, Lecture Notes in Computer Science.

[12]  F. Glover,et al.  Handbook of Metaheuristics , 2019, International Series in Operations Research & Management Science.

[13]  Daniel Merkle,et al.  Competition Controlled Pheromone Update for Ant Colony Optimization , 2004, ANTS Workshop.

[14]  Christian Blum,et al.  On A Particularity In Model-based Search , 2002, GECCO.

[15]  Fred W. Glover,et al.  Tabu Search - Part I , 1989, INFORMS J. Comput..

[16]  A. Prügel-Bennett,et al.  Modelling genetic algorithm dynamics , 2001 .

[17]  R. Steele Optimization , 2005 .

[18]  Christian Blum,et al.  An Ant Colony Optimization Algorithm for Shop Scheduling Problems , 2004, J. Math. Model. Algorithms.

[19]  Daniel Merkle,et al.  Modelling ACO: Composed Permutation Problems , 2002, Ant Algorithms.

[20]  H. Robbins A Stochastic Approximation Method , 1951 .

[21]  Marcus Randall,et al.  Search Bias in Constructive Metaheuristics and Implications for Ant Colony Optimisation , 2004, ANTS Workshop.

[22]  Marco Dorigo,et al.  The hyper-cube framework for ant colony optimization , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[24]  M. R. Rao,et al.  Combinatorial Optimization , 1992, NATO ASI Series.

[25]  Mauro Birattari,et al.  Toward the Formal Foundation of Ant Programming , 2002, Ant Algorithms.

[26]  Walter J. Gutjahr,et al.  A Graph-based Ant System and its convergence , 2000, Future Gener. Comput. Syst..

[27]  Walter J. Gutjahr,et al.  ACO algorithms with guaranteed convergence to the optimal solution , 2002, Inf. Process. Lett..

[28]  L. Kallel,et al.  Theoretical Aspects of Evolutionary Computing , 2001, Natural Computing Series.

[29]  Mauro Birattari,et al.  Model-Based Search for Combinatorial Optimization: A Critical Survey , 2004, Ann. Oper. Res..

[30]  Vittorio Maniezzo,et al.  The Ant System Applied to the Quadratic Assignment Problem , 1999, IEEE Trans. Knowl. Data Eng..

[31]  Paul A. Viola,et al.  MIMIC: Finding Optima by Estimating Probability Densities , 1996, NIPS.

[32]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[33]  Thomas Stützle,et al.  A short convergence proof for a class of ant colony optimization algorithms , 2002, IEEE Trans. Evol. Comput..

[34]  Mauro Birattari,et al.  Model-based Search for Combinatorial Optimization , 2001 .

[35]  Lawrence Davis,et al.  Genetic Algorithms and Simulated Annealing , 1987 .

[36]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[37]  Kalyanmoy Deb,et al.  Analyzing Deception in Trap Functions , 1992, FOGA.

[38]  Luca Maria Gambardella,et al.  MACS-VRPTW: a multiple ant colony system for vehicle routing problems with time windows , 1999 .

[39]  Alain Hertz,et al.  Ants can colour graphs , 1997 .

[40]  William J. Cook,et al.  Combinatorial optimization , 1997 .

[41]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[42]  L. Baum,et al.  Growth transformations for functions on manifolds. , 1968 .

[43]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[44]  Marco Dorigo,et al.  AntNet: Distributed Stigmergetic Control for Communications Networks , 1998, J. Artif. Intell. Res..

[45]  Krzysztof Socha,et al.  ACO for Continuous and Mixed-Variable Optimization , 2004, ANTS Workshop.

[46]  Thomas Stützle,et al.  Ant Colony Optimization Theory , 2004 .

[47]  Christian Blum,et al.  Metaheuristics in combinatorial optimization: Overview and conceptual comparison , 2003, CSUR.

[48]  J. Deneubourg,et al.  The self-organizing exploratory pattern of the argentine ant , 1990, Journal of Insect Behavior.

[49]  Lawrence J. Fogel,et al.  Intelligence Through Simulated Evolution: Forty Years of Evolutionary Programming , 1999 .

[50]  Richard F. Hartl,et al.  D-Ants: Savings Based Ants divide and conquer the vehicle routing problem , 2004, Comput. Oper. Res..

[51]  Matthijs den Besten,et al.  Ant Colony Optimization for the Total Weighted Tardiness Problem , 2000, PPSN.

[52]  Marco Dorigo,et al.  Deception in Ant Colony Optimization , 2004, ANTS Workshop.

[53]  V. Cerný Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm , 1985 .

[54]  Thomas Stützle,et al.  A SHORT CONVERGENCE PROOF FOR A CLASS OF ACO ALGORITHMS , 2002 .

[55]  Luca Maria Gambardella,et al.  An Ant Colony System Hybridized with a New Local Search for the Sequential Ordering Problem , 2000, INFORMS J. Comput..

[56]  Marco Dorigo,et al.  Search bias in ant colony optimization: on the role of competition-balanced systems , 2005, IEEE Transactions on Evolutionary Computation.

[57]  Christian Blum,et al.  Theoretical and practical aspects of ant colony optimization , 2004 .

[58]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[59]  Christian Blum,et al.  When Model Bias Is Stronger than Selection Pressure , 2002, PPSN.

[60]  Martin Middendorf,et al.  Pheromone Modification Strategies for Ant Algorithms Applied to Dynamic TSP , 2001, EvoWorkshops.

[61]  Thomas Stützle,et al.  Stochastic Local Search: Foundations & Applications , 2004 .

[62]  Vittorio Maniezzo,et al.  Exact and Approximate Nondeterministic Tree-Search Procedures for the Quadratic Assignment Problem , 1999, INFORMS J. Comput..

[63]  S. Uryasev,et al.  Stochastic optimization : Algorithms and Applications , 2001 .

[64]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[65]  Michael I. Jordan Learning in Graphical Models , 1999, NATO ASI Series.

[66]  Marco Dorigo,et al.  Ant Colony Optimization and Stochastic Gradient Descent , 2002, Artificial Life.

[67]  Marco Dorigo,et al.  Optimization, Learning and Natural Algorithms , 1992 .

[68]  S. Kullback,et al.  Information Theory and Statistics , 1959 .

[69]  M. Dorigo,et al.  1 Positive Feedback as a Search Strategy , 1991 .

[70]  Martin Middendorf,et al.  Modeling the Dynamics of Ant Colony Optimization , 2002, Evolutionary Computation.

[71]  Riccardo Poli,et al.  New ideas in optimization , 1999 .

[72]  H. Mühlenbein,et al.  From Recombination of Genes to the Estimation of Distributions I. Binary Parameters , 1996, PPSN.

[73]  Christian Blum,et al.  Beam-ACO - hybridizing ant colony optimization with beam search: an application to open shop scheduling , 2005, Comput. Oper. Res..

[74]  R. Rubinstein Combinatorial Optimization, Cross-Entropy, Ants and Rare Events , 2001 .

[75]  Hartmut Schmeck,et al.  Ant colony optimization for resource-constrained project scheduling , 2000, IEEE Trans. Evol. Comput..

[76]  Michael Sampels,et al.  Ant colony optimization for FOP shop scheduling: a case study on different pheromone representations , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[77]  Michael Sampels,et al.  Ant Algorithms for the University Course Timetabling Problem with Regard to the State-of-the-Art , 2003, EvoWorkshops.

[78]  Fred W. Glover,et al.  Tabu Search , 1997, Handbook of Heuristics.

[79]  Marc Gravel,et al.  Comparing an ACO algorithm with other heuristics for the single machine scheduling problem with sequence-dependent setup times , 2002, J. Oper. Res. Soc..