Prediction of homoprotein and heteroprotein complexes by protein docking and template‐based modeling: A CASP‐CAPRI experiment

We present the results for CAPRI Round 30, the first joint CASP‐CAPRI experiment, which brought together experts from the protein structure prediction and protein–protein docking communities. The Round comprised 25 targets from amongst those submitted for the CASP11 prediction experiment of 2014. The targets included mostly homodimers, a few homotetramers, and two heterodimers, and comprised protein chains that could readily be modeled using templates from the Protein Data Bank. On average 24 CAPRI groups and 7 CASP groups submitted docking predictions for each target, and 12 CAPRI groups per target participated in the CAPRI scoring experiment. In total more than 9500 models were assessed against the 3D structures of the corresponding target complexes. Results show that the prediction of homodimer assemblies by homology modeling techniques and docking calculations is quite successful for targets featuring large enough subunit interfaces to represent stable associations. Targets with ambiguous or inaccurate oligomeric state assignments, often featuring crystal contact‐sized interfaces, represented a confounding factor. For those, a much poorer prediction performance was achieved, while nonetheless often providing helpful clues on the correct oligomeric state of the protein. The prediction performance was very poor for genuine tetrameric targets, where the inaccuracy of the homology‐built subunit models and the smaller pair‐wise interfaces severely limited the ability to derive the correct assembly mode. Our analysis also shows that docking procedures tend to perform better than standard homology modeling techniques and that highly accurate models of the protein components are not always required to identify their association modes with acceptable accuracy. Proteins 2016; 84(Suppl 1):323–348. © 2016 The Authors Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.

Daisuke Kihara | Keehyoung Joo | Daisuke Kuroda | Luigi Cavallo | Jilong Li | Sameer Velankar | Chengfei Yan | Xiaoqin Zou | Minkyung Baek | Chaok Seok | Zhiping Weng | Jianlin Cheng | Mieczyslaw Torchala | Alexandre M J J Bonvin | Andrey Tovchigrechko | Anna Vangone | Dima Kozakov | Dmitri Beglov | Sandor Vajda | Andrej Sali | Huan-Xiang Zhou | Jeffrey J. Gray | Zhiwei Ma | Dina Schneidman-Duhovny | Amit Roy | David W Ritchie | Brian Jiménez-García | Thom Vreven | Miguel Romero-Durana | Xusi Han | Ilya A Vakser | Jonathan C. Fuller | Xiaofeng Yu | Sergei Grudinin | Andriy Kryshtafovych | Petr Popov | Ivan Anishchenko | Petras J Kundrotas | Sanbo Qin | Jong Young Joung | Hasup Lee | Chiara Pallara | Edrisse Chermak | Juan Esquivel-Rodriguez | Anisah W. Ghoorah | Gydo van Zundert | Ezgi Karaca | Jeffrey J Gray | Lenna X. Peterson | Xianjin Xu | Romina Oliva | Marc F Lensink | Shoshana J Wodak | Narcis Fernandez-Fuentes | Shen-You Huang | Joan Segura | Shruthi Viswanath | Ron Elber | Emilie Neveu | Sangwoo Park | Lim Heo | Gyu Rie Lee | Bernard Maigret | Marie-Dominique Devignes | Anisah Ghoorah | Raphaël A G Chaleil | Paul A Bates | Efrat Ben-Zeev | Miriam Eisenstein | Surendra S Negi | Brian G Pierce | Tyler M Borrman | Jinchao Yu | Françoise Ochsenbein | Raphaël Guerois | João P G L M Rodrigues | Mehdi Nellen | Li Xue | Adrien S J Melquiond | Koen Visscher | Panagiotis L Kastritis | Liming Qiu | Yang Shen | Lenna X Peterson | Hyung-Rae Kim | Neil J Bruce | Jonathan C Fuller | Rebecca C Wade | Kenichiro Imai | Kazunori Yamada | Toshiyuki Oda | Tsukasa Nakamura | Kentaro Tomii | Iain H Moal | Juan Férnandez-Recio | Jong Yun Kim | Jooyoung Lee | Scott Mottarella | David R Hall | Artem Mamonov | Bing Xia | Tanggis Bohnuud | Carlos A Del Carpio | Eichiro Ichiishi | Nicholas Marze | Shourya S Roy Burman | Shourya S. Roy Burman | Surendra S. Negi | Neil J. Bruce | Raphael A. G. Chaleil | Nicholas A. Marze | Scott E. Mottarella | Kazunori D. Yamada | Z. Weng | S. Wodak | A. Sali | D. Kihara | Jianlin Cheng | S. Vajda | R. Wade | R. Elber | M. Eisenstein | I. Vakser | J. Fernández-Recio | Jooyoung Lee | K. Joo | D. Schneidman-Duhovny | P. Bates | Chaok Seok | B. Pierce | J. J. Gray | Xianjin Xu | D. Kozakov | D. Hall | D. Beglov | Andriy Kryshtafovych | R. Guérois | D. Ritchie | S. Velankar | Huan‐Xiang Zhou | Sanbo Qin | X. Zou | I. Anishchenko | F. Ochsenbein | C. Del Carpio | P. Kastritis | Shruthi Viswanath | M. Lensink | J. Rodrigues | A. Bonvin | T. Vreven | I. Moal | A. Vangone | B. Jiménez-García | K. Tomii | Jilong Li | L. Xue | B. Maigret | A. Melquiond | M. Devignes | E. Karaca | C. Pallara | B. Xia | K. Imai | P. Kundrotas | L. Cavallo | R. Oliva | J. Segura | N. Fernandez-Fuentes | P. Popov | Sergei Grudinin | G. V. van Zundert | E. Ben-Zeev | Lim Heo | Juan Esquivel-Rodríguez | Tyler Borrman | Chengfei Yan | A. Mamonov | A. Tovchigrechko | Miguel Romero-Durana | Hasup Lee | Toshiyuki Oda | K. Visscher | Yang Shen | Shengua Huang | Sangwoo Park | Liming Qiu | J. Y. Joung | Jong Yun Kim | Émilie Neveu | Xusi Han | Tsukasa Nakamura | A. Kryshtafovych | Daisuke Kuroda | Zhiwei Ma | Jinchao Yu | Xiaofeng Yu | S. Negi | M. Baek | E. Chermak | Hyungrae Kim | M. Torchala | Gyu Rie Lee | T. Bohnuud | M. Nellen | Amit Roy | Eichiro Ichiishi | Brian Jiménez‐García | N. Fernández-Fuentes

[1]  Ron Elber,et al.  PIE—Efficient filters and coarse grained potentials for unbound protein–protein docking , 2010, Proteins.

[2]  Adam Zemla,et al.  LGA: a method for finding 3D similarities in protein structures , 2003, Nucleic Acids Res..

[3]  Yang Zhang,et al.  I-TASSER server for protein 3D structure prediction , 2008, BMC Bioinformatics.

[4]  E. Katchalski‐Katzir,et al.  Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[5]  John A. Tainer,et al.  Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS) , 2009, Nature Methods.

[6]  Jean-Luc Pons,et al.  @TOME-2: a new pipeline for comparative modeling of protein–ligand complexes , 2009, Nucleic Acids Res..

[7]  M J Sternberg,et al.  Enhancement of protein modeling by human intervention in applying the automatic programs 3D‐JIGSAW and 3D‐PSSM , 2001, Proteins.

[8]  David W. Ritchie,et al.  KBDOCK 2013: a spatial classification of 3D protein domain family interactions , 2013, Nucleic Acids Res..

[9]  J. Skolnick,et al.  TM-align: a protein structure alignment algorithm based on the TM-score , 2005, Nucleic acids research.

[10]  M. Eisenstein,et al.  Construction of molecular assemblies via docking: Modeling of tetramers with D2 symmetry , 2003, Proteins.

[11]  Keehyoung Joo,et al.  Protein structure modeling for CASP10 by multiple layers of global optimization , 2014, Proteins.

[12]  Johannes Söding,et al.  The HHpred interactive server for protein homology detection and structure prediction , 2005, Nucleic Acids Res..

[13]  Takatsugu Hirokawa,et al.  Protein structure prediction using a variety of profile libraries and 3D verification , 2005, Proteins.

[14]  Kazunori D. Yamada,et al.  Revisiting amino acid substitution matrices for identifying distantly related proteins , 2013, Bioinform..

[15]  Andrey Tovchigrechko,et al.  GRAMM-X public web server for protein–protein docking , 2006, Nucleic Acids Res..

[16]  Zhiping Weng,et al.  ZRANK: Reranking protein docking predictions with an optimized energy function , 2007, Proteins.

[17]  Seung Yup Lee,et al.  Analysis of TASSER‐based CASP7 protein structure prediction results , 2007, Proteins.

[18]  Daisuke Kihara,et al.  Detecting local residue environment similarity for recognizing near‐native structure models , 2014, Proteins.

[19]  Hideyuki Tsuboi,et al.  A graph theoretical approach for assessing bio-macromolecular complex structural stability , 2009, Journal of molecular modeling.

[20]  Yang Shen,et al.  Improved flexible refinement of protein docking in CAPRI rounds 22–27 , 2013, Proteins.

[21]  Huan‐Xiang Zhou,et al.  Prediction of protein interaction sites from sequence profile and residue neighbor list , 2001, Proteins.

[22]  Alexandre M. J. J. Bonvin,et al.  Building Macromolecular Assemblies by Information-driven Docking , 2010, Molecular & Cellular Proteomics.

[23]  Ruth Nussinov,et al.  FireDock: Fast interaction refinement in molecular docking , 2007, Proteins.

[24]  Xiaoqin Zou,et al.  ITScorePro: an efficient scoring program for evaluating the energy scores of protein structures for structure prediction. , 2014, Methods in molecular biology.

[25]  S. Wodak,et al.  Docking and scoring protein complexes: CAPRI 3rd Edition , 2007, Proteins.

[26]  Marco Biasini,et al.  SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information , 2014, Nucleic Acids Res..

[27]  Zhiping Weng,et al.  M-ZDOCK: a grid-based approach for Cn symmetric multimer docking , 2005, Bioinform..

[28]  Huan-Xiang Zhou,et al.  meta-PPISP: a meta web server for protein-protein interaction site prediction , 2007, Bioinform..

[29]  Ruth Nussinov,et al.  PatchDock and SymmDock: servers for rigid and symmetric docking , 2005, Nucleic Acids Res..

[30]  Brian D. Weitzner,et al.  Benchmarking and Analysis of Protein Docking Performance in Rosetta v3.2 , 2011, PloS one.

[31]  Chaok Seok,et al.  Refinement of unreliable local regions in template‐based protein models , 2012, Proteins.

[32]  A. Biegert,et al.  HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment , 2011, Nature Methods.

[33]  Xiaoqin Zou,et al.  An iterative knowledge‐based scoring function for protein–protein recognition , 2008, Proteins.

[34]  Z. Weng,et al.  Integrating atom‐based and residue‐based scoring functions for protein–protein docking , 2011, Protein science : a publication of the Protein Society.

[35]  Vasant Honavar,et al.  HomPPI: a class of sequence homology based protein-protein interface prediction methods , 2011, BMC Bioinformatics.

[36]  Ben M. Webb,et al.  Comparative Protein Structure Modeling Using MODELLER , 2016, Current protocols in bioinformatics.

[37]  Ron Elber,et al.  Building and assessing atomic models of proteins from structural templates: Learning and benchmarks , 2009, Proteins.

[38]  Z. Weng,et al.  ZDOCK: An initial‐stage protein‐docking algorithm , 2003, Proteins.

[39]  David Baker,et al.  Computational design of novel protein binders and experimental affinity maturation. , 2013, Methods in enzymology.

[40]  Pamela F. Jones,et al.  VORFFIP-Driven Dock: V-D2OCK, a Fast and Accurate Protein Docking Strategy , 2015, PloS one.

[41]  SödingJohannes Protein homology detection by HMM--HMM comparison , 2005 .

[42]  Andrej Sali,et al.  Integrative Structural Biology , 2013, Science.

[43]  Jian Peng,et al.  Template-based protein structure modeling using the RaptorX web server , 2012, Nature Protocols.

[44]  A. Bonvin,et al.  The HADDOCK web server for data-driven biomolecular docking , 2010, Nature Protocols.

[45]  Xin Deng,et al.  The MULTICOM toolbox for protein structure prediction , 2012, BMC Bioinformatics.

[46]  Haruki Nakamura,et al.  Announcing the worldwide Protein Data Bank , 2003, Nature Structural Biology.

[47]  Ioannis Ch. Paschalidis,et al.  Optimizing noisy funnel-like functions on the euclidean group with applications to protein docking , 2007, 2007 46th IEEE Conference on Decision and Control.

[48]  Ioannis Ch. Paschalidis,et al.  Protein Docking by the Underestimation of Free Energy Funnels in the Space of Encounter Complexes , 2008, PLoS Comput. Biol..

[49]  C. Dominguez,et al.  HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. , 2003, Journal of the American Chemical Society.

[50]  A. Kolinski Protein modeling and structure prediction with a reduced representation. , 2004, Acta biochimica Polonica.

[51]  M. Brylinski,et al.  eThread: A Highly Optimized Machine Learning-Based Approach to Meta-Threading and the Modeling of Protein Tertiary Structures , 2012, PloS one.

[52]  D. Case,et al.  Exploring protein native states and large‐scale conformational changes with a modified generalized born model , 2004, Proteins.

[53]  David Baker,et al.  Emergence of symmetry in homooligomeric biological assemblies , 2008, Proceedings of the National Academy of Sciences.

[54]  Ilya A Vakser,et al.  Development and testing of an automated approach to protein docking , 2005, Proteins.

[55]  David Baker,et al.  High-resolution comparative modeling with RosettaCM. , 2013, Structure.

[56]  Yang Zhang,et al.  Automated protein structure modeling in CASP9 by I‐TASSER pipeline combined with QUARK‐based ab initio folding and FG‐MD‐based structure refinement , 2011, Proteins.

[57]  Krzysztof Fidelis,et al.  CASP prediction center infrastructure and evaluation measures in CASP10 and CASP ROLL , 2014, Proteins.

[58]  K. Henrick,et al.  Inference of macromolecular assemblies from crystalline state. , 2007, Journal of molecular biology.

[59]  David W Ritchie,et al.  Recent progress and future directions in protein-protein docking. , 2008, Current protein & peptide science.

[60]  Shoshana J Wodak,et al.  Intertwined associations in structures of homooligomeric proteins. , 2013, Structure.

[61]  Zhiping Weng,et al.  Exploring Angular Distance in Protein-Protein Docking Algorithms , 2013, PloS one.

[62]  Alexandre M J J Bonvin,et al.  Clustering biomolecular complexes by residue contacts similarity , 2012, Proteins.

[63]  Dima Kozakov,et al.  Convergence and combination of methods in protein-protein docking. , 2009, Current opinion in structural biology.

[64]  J. Janin,et al.  Structural basis of macromolecular recognition. , 2002, Advances in protein chemistry.

[65]  D. Ritchie,et al.  Protein docking using spherical polar Fourier correlations , 2000, Proteins.

[66]  Krishna Praneeth Kilambi,et al.  Extending RosettaDock with water, sugar, and pH for prediction of complex structures and affinities for CAPRI rounds 20–27 , 2013, Proteins.

[67]  Roland L. Dunbrack,et al.  proteins STRUCTURE O FUNCTION O BIOINFORMATICS Improved prediction of protein side-chain conformations with SCWRL4 , 2022 .

[68]  Chaok Seok,et al.  GalaxyWEB server for protein structure prediction and refinement , 2012, Nucleic Acids Res..

[69]  Hilla Peretz,et al.  The , 1966 .

[70]  Yifeng D. Yang,et al.  Multi‐LZerD: Multiple protein docking for asymmetric complexes , 2012, Proteins.

[71]  Narayanan Eswar,et al.  Protein structure modeling with MODELLER. , 2008, Methods in molecular biology.

[72]  Krzysztof Fidelis,et al.  Processing and evaluation of predictions in CASP4 , 2001, Proteins.

[73]  P. Bork,et al.  Proteome Organization in a Genome-Reduced Bacterium , 2009, Science.

[74]  Yang Zhang,et al.  The I-TASSER Suite: protein structure and function prediction , 2014, Nature Methods.

[75]  M. Sternberg,et al.  Protein structure prediction on the Web: a case study using the Phyre server , 2009, Nature Protocols.

[76]  Luigi Cavallo,et al.  Ranking multiple docking solutions based on the conservation of inter‐residue contacts , 2013, Proteins.

[77]  Hasup Lee,et al.  GalaxyGemini: a web server for protein homo-oligomer structure prediction based on similarity , 2013, Bioinform..

[78]  Andrej Sali,et al.  Optimized atomic statistical potentials: assessment of protein interfaces and loops , 2013, Bioinform..

[79]  A. Sali,et al.  Comparative protein structure modeling of genes and genomes. , 2000, Annual review of biophysics and biomolecular structure.

[80]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[81]  D. Baker,et al.  Robust and accurate prediction of residue–residue interactions across protein interfaces using evolutionary information , 2014, eLife.

[82]  Thomas A. Hopf,et al.  Protein structure prediction from sequence variation , 2012, Nature Biotechnology.

[83]  Marc N. Offman,et al.  Alternating evolutionary pressure in a genetic algorithm facilitates protein model selection , 2008, BMC Structural Biology.

[84]  Rodrigo Lopez,et al.  Analysis Tool Web Services from the EMBL-EBI , 2013, Nucleic Acids Res..

[85]  Luigi Cavallo,et al.  Using a consensus approach based on the conservation of inter‐residue contacts to rank CAPRI models , 2013, Proteins.

[86]  Jianlin Cheng,et al.  APOLLO: a quality assessment service for single and multiple protein models , 2011, Bioinform..

[87]  Pinak Chakrabarti,et al.  The subunit interfaces of weakly associated homodimeric proteins. , 2010, Journal of molecular biology.

[88]  David Baker,et al.  Macromolecular modeling with rosetta. , 2008, Annual review of biochemistry.

[89]  Chenghua Shao,et al.  Trendspotting in the Protein Data Bank , 2013, FEBS letters.

[90]  Yang Zhang,et al.  Scoring function for automated assessment of protein structure template quality , 2004, Proteins.

[91]  Yang Zhang,et al.  I‐TASSER: Fully automated protein structure prediction in CASP8 , 2009, Proteins.

[92]  Stephen R Comeau,et al.  ClusPro: Performance in CAPRI rounds 6–11 and the new server , 2007, Proteins.

[93]  András Fiser,et al.  M4T: a comparative protein structure modeling server , 2007, Nucleic Acids Res..

[94]  T. Blundell,et al.  Comparative protein modelling by satisfaction of spatial restraints. , 1993, Journal of molecular biology.

[95]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[96]  Michihisa Koyama,et al.  A graph theoretical approach for analysis of protein flexibility change at protein complex formation. , 2005, Genome informatics. International Conference on Genome Informatics.

[97]  Chaok Seok,et al.  GalaxyTBM: template-based modeling by building a reliable core and refining unreliable local regions , 2012, BMC Bioinformatics.

[98]  Marc F Lensink,et al.  Docking and scoring protein interactions: CAPRI 2009 , 2010, Proteins.

[99]  Zhiping Weng,et al.  Performance of ZDOCK and ZRANK in CAPRI rounds 13–19 , 2010, Proteins.

[100]  Ozlem Keskin,et al.  Fast and accurate modeling of protein–protein interactions by combining template‐interface‐based docking with flexible refinement , 2012, Proteins.

[101]  Kengo Kinoshita,et al.  Blind prediction of interfacial water positions in CAPRI , 2014, Proteins.

[102]  D. V. S. Ravikant,et al.  Improving ranking of models for protein complexes with side chain modeling and atomic potentials , 2013, Proteins.

[103]  Guilhem Faure,et al.  InterEvScore: a novel coarse-grained interface scoring function using a multi-body statistical potential coupled to evolution , 2013, Bioinform..

[104]  Holger Gohlke,et al.  The Amber biomolecular simulation programs , 2005, J. Comput. Chem..

[105]  Oliver Brock,et al.  RBO Aleph: leveraging novel information sources for protein structure prediction , 2015, Nucleic Acids Res..

[106]  Alessandro Vullo,et al.  Distill: a suite of web servers for the prediction of one-, two- and three-dimensional structural features of proteins , 2006, BMC Bioinformatics.

[107]  I. Vakser Protein docking for low-resolution structures. , 1995, Protein engineering.

[108]  Pei Qiang,et al.  Robotic path planning and protein complex modeling considering low frequency intra-molecular loop and domain motions. , 2006, Genome informatics. International Conference on Genome Informatics.

[109]  Z. Weng,et al.  Integrating statistical pair potentials into protein complex prediction , 2007, Proteins.

[110]  Yaoqi Zhou,et al.  Specific interactions for ab initio folding of protein terminal regions with secondary structures , 2008, Proteins.

[111]  Ron Elber,et al.  DOCK/PIERR: web server for structure prediction of protein-protein complexes. , 2014, Methods in molecular biology.

[112]  Burkhard Rost,et al.  Evaluation of template‐based models in CASP8 with standard measures , 2009, Proteins.

[113]  Xiaoqin Zou,et al.  Statistical mechanics‐based method to extract atomic distance‐dependent potentials from protein structures , 2011, Proteins.

[114]  Yang Zhang,et al.  I-TASSER: a unified platform for automated protein structure and function prediction , 2010, Nature Protocols.

[115]  Jilong Li,et al.  Designing and benchmarking the MULTICOM protein structure prediction system , 2013, BMC Structural Biology.

[116]  Pradeep Kota,et al.  Automated minimization of steric clashes in protein structures , 2011, Proteins.

[117]  Miriam Eisenstein,et al.  Electrostatics in protein–protein docking , 2002, Protein science : a publication of the Protein Society.

[118]  Miriam Eisenstein,et al.  Hydrophobic complementarity in protein–protein docking , 2004, Proteins.

[119]  Johannes Söding,et al.  Fast and accurate automatic structure prediction with HHpred , 2009, Proteins.

[120]  Daisuke Kihara,et al.  Protein-protein docking using region-based 3D Zernike descriptors , 2009, BMC Bioinformatics.

[121]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[122]  Marc F Lensink,et al.  Docking, scoring, and affinity prediction in CAPRI , 2013, Proteins.

[123]  Ilya A Vakser,et al.  Low-resolution structural modeling of protein interactome. , 2013, Current opinion in structural biology.

[124]  Zhiping Weng,et al.  ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers , 2014, Bioinform..

[125]  David W. Ritchie,et al.  Fast computation, rotation, and comparison of low resolution spherical harmonic molecular surfaces , 1999, Journal of Computational Chemistry.

[126]  Rohita Sinha,et al.  Docking by structural similarity at protein‐protein interfaces , 2010, Proteins.

[127]  David Baker,et al.  Protein structure prediction and analysis using the Robetta server , 2004, Nucleic Acids Res..

[128]  Kengo Kinoshita,et al.  Community-wide assessment of protein-interface modeling suggests improvements to design methodology. , 2011, Journal of molecular biology.

[129]  H. Wolfson,et al.  SymmRef: A flexible refinement method for symmetric multimers , 2011, Proteins.

[130]  Jianlin Cheng,et al.  MULTICOM: a multi-level combination approach to protein structure prediction and its assessments in CASP8 , 2010, Bioinform..

[131]  Torsten Schwede,et al.  The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling , 2006, Bioinform..

[132]  Pamela F. Jones,et al.  Improving the prediction of protein binding sites by combining heterogeneous data and Voronoi diagrams , 2011, BMC Bioinformatics.

[133]  Zhiping Weng,et al.  Performance of ZDOCK in CAPRI rounds 20–26 , 2013, Proteins.

[134]  Petr Popov,et al.  Rapid determination of RMSDs corresponding to macromolecular rigid body motions , 2014, J. Comput. Chem..

[135]  Miriam Eisenstein,et al.  Combining interface core and whole interface descriptors in postscan processing of protein‐protein docking models , 2009, Proteins.

[136]  Lazaros Mavridis,et al.  HexServer: an FFT-based protein docking server powered by graphics processors , 2010, Nucleic Acids Res..

[137]  Eiichiro Ichiishi,et al.  MIAX: A new paradigm for modeling biomacromolecular interactions and complex formation in condensed phases , 2002, Proteins.

[138]  Yang Zhang,et al.  MM-align: a quick algorithm for aligning multiple-chain protein complex structures using iterative dynamic programming , 2009, Nucleic acids research.

[139]  Lazaros Mavridis,et al.  Fast protein structure alignment using Gaussian overlap scoring of backbone peptide fragment similarity , 2012, Bioinform..

[140]  Zhengwei Zhu,et al.  Templates are available to model nearly all complexes of structurally characterized proteins , 2012, Proceedings of the National Academy of Sciences.

[141]  J. Rubinstein,et al.  Beyond blob-ology , 2014, Science.

[142]  J. Janin,et al.  A dissection of specific and non-specific protein-protein interfaces. , 2004, Journal of molecular biology.

[143]  Zhiping Weng,et al.  Accelerating Protein Docking in ZDOCK Using an Advanced 3D Convolution Library , 2011, PloS one.

[144]  Sergey Lyskov,et al.  The RosettaDock server for local protein–protein docking , 2008, Nucleic Acids Res..

[145]  A. D. McLachlan,et al.  Rapid comparison of protein structures , 1982 .

[146]  Mieczyslaw Torchala,et al.  SwarmDock: a server for flexible protein-protein docking , 2013, Bioinform..

[147]  Eiichiro Ichiishi,et al.  Docking unbound proteins with MIAX: a novel algorithm for protein-protein soft docking. , 2003, Genome informatics. International Conference on Genome Informatics.

[148]  Timothy A. Whitehead,et al.  Optimization of affinity, specificity and function of designed influenza inhibitors using deep sequencing , 2012, Nature Biotechnology.

[149]  Yang Zhang,et al.  Template‐based modeling and free modeling by I‐TASSER in CASP7 , 2007, Proteins.

[150]  Jeffrey J. Gray,et al.  Protein-protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations. , 2003, Journal of molecular biology.

[151]  Marc F Lensink,et al.  Blind predictions of protein interfaces by docking calculations in CAPRI , 2010, Proteins.

[152]  Xiaoqin Zou,et al.  MDockPP: A hierarchical approach for protein‐protein docking and its application to CAPRI rounds 15–19 , 2010, Proteins.

[153]  Chaok Seok,et al.  GalaxyRefine: protein structure refinement driven by side-chain repacking , 2013, Nucleic Acids Res..

[154]  Z. Weng,et al.  A novel shape complementarity scoring function for protein‐protein docking , 2003, Proteins.

[155]  D. Baker,et al.  Alternate states of proteins revealed by detailed energy landscape mapping. , 2011, Journal of molecular biology.

[156]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[157]  Zachary F. Burton,et al.  α/β Proteins , 2018 .

[158]  Trey Ideker,et al.  Cytoscape 2.8: new features for data integration and network visualization , 2010, Bioinform..

[159]  B. Alberts The Cell as a Collection of Protein Machines: Preparing the Next Generation of Molecular Biologists , 1998, Cell.

[160]  Vittorio Scarano,et al.  CONSRANK: a server for the analysis, comparison and ranking of docking models based on inter-residue contacts , 2015, Bioinform..

[161]  Ben M. Webb,et al.  Putting the Pieces Together: Integrative Modeling Platform Software for Structure Determination of Macromolecular Assemblies , 2012, PLoS biology.

[162]  A J Olson,et al.  Structural symmetry and protein function. , 2000, Annual review of biophysics and biomolecular structure.

[163]  Mieczyslaw Torchala,et al.  A Markov‐chain model description of binding funnels to enhance the ranking of docked solutions , 2013, Proteins.

[164]  V. Hornak,et al.  Comparison of multiple Amber force fields and development of improved protein backbone parameters , 2006, Proteins.

[165]  D. Kihara,et al.  A novel method for protein–protein interaction site prediction using phylogenetic substitution models , 2012, Proteins.

[166]  Ilya A Vakser,et al.  Global and local structural similarity in protein–protein complexes: Implications for template‐based docking , 2013, Proteins.

[167]  Julie C. Mitchell,et al.  Community‐wide evaluation of methods for predicting the effect of mutations on protein–protein interactions , 2013, Proteins.

[168]  Sergei Grudinin,et al.  Knowledge of Native Protein-Protein Interfaces Is Sufficient To Construct Predictive Models for the Selection of Binding Candidates , 2015, J. Chem. Inf. Model..

[169]  Keehyoung Joo,et al.  Refinement of protein termini in template‐based modeling using conformational space annealing , 2011, Proteins.

[170]  Yang Zhang,et al.  Template-based structure modeling of protein-protein interactions. , 2014, Current opinion in structural biology.