Computational Complexity versus Statistical Performance on Sparse Recovery Problems

We show that several classical quantities controlling compressed sensing performance directly match classical parameters controlling algorithmic complexity. We first describe linearly convergent restart schemes on first-order methods solving a broad range of compressed sensing problems, where sharpness at the optimum controls convergence speed. We show that for sparse recovery problems, this sharpness can be written as a condition number, given by the ratio between true signal sparsity and the largest signal size that can be recovered by the observation matrix. In a similar vein, Renegar's condition number is a data-driven complexity measure for convex programs, generalizing classical condition numbers for linear systems. We show that for a broad class of compressed sensing problems, the worst case value of this algorithmic complexity measure taken over all signals matches the restricted singular value of the observation matrix which controls robust recovery performance. Overall, this means in both cases that, in compressed sensing problems, a single parameter directly controls both computational complexity and recovery performance. Numerical experiments illustrate these points using several classical algorithms.

[1]  Robert M. Freund,et al.  A geometric analysis of Renegar’s condition number, and its interplay with conic curvature , 2007, Math. Program..

[2]  Santosh S. Vempala,et al.  An Efficient Re-Scaled Perceptron Algorithm for Conic Systems , 2006, Math. Oper. Res..

[3]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[4]  Arkadi Nemirovski,et al.  On sparse representation in pairs of bases , 2003, IEEE Trans. Inf. Theory.

[5]  Robert M. Freund,et al.  Condition-Based Complexity of Convex Optimization in Conic Linear Form via the Ellipsoid Algorithm , 1999, SIAM J. Optim..

[6]  Marc Teboulle,et al.  Conditional Gradient Algorithmsfor Rank-One Matrix Approximations with a Sparsity Constraint , 2011, SIAM Rev..

[7]  Pradeep Ravikumar,et al.  Constant Nullspace Strong Convexity and Fast Convergence of Proximal Methods under High-Dimensional Settings , 2014, NIPS.

[8]  Zheng Qu,et al.  Restarting accelerated gradient methods with a rough strong convexity estimate , 2016, 1609.07358.

[9]  Weiyu Xu,et al.  Necessary and sufficient conditions for success of the nuclear norm heuristic for rank minimization , 2008, 2008 47th IEEE Conference on Decision and Control.

[10]  Xiaoming Huo,et al.  Uncertainty principles and ideal atomic decomposition , 2001, IEEE Trans. Inf. Theory.

[11]  R. DeVore,et al.  Compressed sensing and best k-term approximation , 2008 .

[12]  James Renegar,et al.  Incorporating Condition Measures into the Complexity Theory of Linear Programming , 1995, SIAM J. Optim..

[13]  Yurii Nesterov,et al.  Smooth minimization of non-smooth functions , 2005, Math. Program..

[14]  Michael I. Jordan,et al.  Computational and statistical tradeoffs via convex relaxation , 2012, Proceedings of the National Academy of Sciences.

[15]  Qi Zhang,et al.  \(\ell_{1, p}\)-Norm Regularization: Error Bounds and Convergence Rate Analysis of First-Order Methods , 2015, ICML.

[16]  Robert M. Freund,et al.  Some characterizations and properties of the “distance to ill-posedness” and the condition measure of a conic linear system , 1999, Math. Program..

[17]  Joel A. Tropp,et al.  Living on the edge: phase transitions in convex programs with random data , 2013, 1303.6672.

[18]  Andrea Montanari,et al.  Cone-Constrained Principal Component Analysis , 2014, NIPS.

[19]  Arkadi Nemirovski,et al.  On unified view of nullspace-type conditions for recoveries associated with general sparsity structures , 2012, ArXiv.

[20]  Fernando Ordóñez,et al.  Computational Experience and the Explanatory Value of Condition Measures for Linear Optimization , 2003, SIAM J. Optim..

[21]  James Renegar,et al.  Linear programming, complexity theory and elementary functional analysis , 1995, Math. Program..

[22]  Adrian S. Lewis,et al.  The [barred L]ojasiewicz Inequality for Nonsmooth Subanalytic Functions with Applications to Subgradient Dynamical Systems , 2006, SIAM J. Optim..

[23]  Martin J. Wainwright,et al.  Fast global convergence of gradient methods for high-dimensional statistical recovery , 2011, ArXiv.

[24]  V. Temlyakov,et al.  A remark on Compressed Sensing , 2007 .

[25]  A. Pajor,et al.  Subspaces of small codimension of finite-dimensional Banach spaces , 1986 .

[26]  Robert M. Freund,et al.  Condition number complexity of an elementary algorithm for computing a reliable solution of a conic linear system , 2000, Math. Program..

[27]  A. Nemirovskii,et al.  Optimal methods of smooth convex minimization , 1986 .

[28]  D. Donoho,et al.  Sparse nonnegative solution of underdetermined linear equations by linear programming. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[29]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[30]  Babak Hassibi,et al.  A simplified approach to recovery conditions for low rank matrices , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[31]  Arkadi Nemirovski,et al.  On verifiable sufficient conditions for sparse signal recovery via ℓ1 minimization , 2008, Math. Program..

[32]  Bamdev Mishra,et al.  Manopt, a matlab toolbox for optimization on manifolds , 2013, J. Mach. Learn. Res..

[33]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[34]  Stephen P. Boyd,et al.  Monotonicity and restart in fast gradient methods , 2014, 53rd IEEE Conference on Decision and Control.

[35]  Robert M. Freund,et al.  On the Complexity of Computing Estimates of Condition Measures of a Conic Linear System , 2003, Math. Oper. Res..

[36]  Javier Peña,et al.  Understanding the Geometry of Infeasible Perturbations of a Conic Linear System , 1999, SIAM J. Optim..

[37]  Alexandre d'Aspremont,et al.  Sharpness, Restart and Acceleration , 2017 .

[38]  James Renegar,et al.  A mathematical view of interior-point methods in convex optimization , 2001, MPS-SIAM series on optimization.

[39]  Babak Hassibi,et al.  New Null Space Results and Recovery Thresholds for Matrix Rank Minimization , 2010, ArXiv.

[40]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[41]  P. Bickel,et al.  SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR , 2008, 0801.1095.

[42]  Justin K. Romberg,et al.  Sparse Recovery of Streaming Signals Using $\ell_1$-Homotopy , 2013, IEEE Transactions on Signal Processing.

[43]  Yurii Nesterov,et al.  Generalized Power Method for Sparse Principal Component Analysis , 2008, J. Mach. Learn. Res..

[44]  S. Geer,et al.  On the conditions used to prove oracle results for the Lasso , 2009, 0910.0722.

[45]  Stephen P. Boyd,et al.  A Differential Equation for Modeling Nesterov's Accelerated Gradient Method: Theory and Insights , 2014, J. Mach. Learn. Res..

[46]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[47]  J. Renegar Some perturbation theory for linear programming , 1994, Math. Program..

[48]  Javier Peña,et al.  A primal-dual symmetric relaxation for homogeneous conic systems , 2007, J. Complex..

[49]  Emmanuel J. Candès,et al.  Templates for convex cone problems with applications to sparse signal recovery , 2010, Math. Program. Comput..

[50]  Pablo A. Parrilo,et al.  The Convex Geometry of Linear Inverse Problems , 2010, Foundations of Computational Mathematics.

[51]  Dennis Amelunxen,et al.  Gordon's inequality and condition numbers in conic optimization , 2014, 1408.3016.

[52]  Y. Nesterov A method for solving the convex programming problem with convergence rate O(1/k^2) , 1983 .

[53]  Emmanuel J. Candès,et al.  Adaptive Restart for Accelerated Gradient Schemes , 2012, Foundations of Computational Mathematics.

[54]  Anthony Man-Cho So,et al.  A unified approach to error bounds for structured convex optimization problems , 2015, Mathematical Programming.

[55]  Nicolas Boumal,et al.  Nonconvex Phase Synchronization , 2016, SIAM J. Optim..

[56]  Jean-Philippe Vert,et al.  Group Lasso with Overlaps: the Latent Group Lasso approach , 2011, ArXiv.

[57]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[58]  Yaakov Tsaig,et al.  Fast Solution of $\ell _{1}$ -Norm Minimization Problems When the Solution May Be Sparse , 2008, IEEE Transactions on Information Theory.

[59]  Martin J. Wainwright,et al.  A unified framework for high-dimensional analysis of $M$-estimators with decomposable regularizers , 2009, NIPS.

[60]  Emmanuel J. Candès,et al.  NESTA: A Fast and Accurate First-Order Method for Sparse Recovery , 2009, SIAM J. Imaging Sci..