Rhythmogenesis in axial locomotor networks: an interspecies comparison.

[1]  ON THE BREAKING-UP OF THE OLD GENUS CULEX. , 1906, Science.

[2]  T. Brown The intrinsic factors in the act of progression in the mammal , 1911 .

[3]  Donald M. Wilson The Central Nervous Control of Flight in a Locust , 1961 .

[4]  G. Somjen,et al.  FUNCTIONAL SIGNIFICANCE OF CELL SIZE IN SPINAL MOTONEURONS. , 1965, Journal of neurophysiology.

[5]  Shik Ml,et al.  Control of walking and running by means of electric stimulation of the midbrain , 1966 .

[6]  M. W. Hardisty,et al.  The biology of lampreys , 1971 .

[7]  P. Buser,et al.  Modalités d'obtention de rythmes locomoteurs chez le lapin spinal par traitements pharmacologiques (DOPA, 5-HTP,d-amphétamine) , 1971 .

[8]  C. Rovainen Synaptic interactions of reticulospinal neurons and nerve cells in the spinal cord of the sea lamprey , 1974, The Journal of comparative neurology.

[9]  C. Rovainen Synaptic interactions of identified nerve cells in the spinal cord of the sea lamprey , 1974, The Journal of comparative neurology.

[10]  M. L. Shik,et al.  Neurophysiology of locomotor automatism. , 1976, Physiological reviews.

[11]  J. Cabelguen,et al.  Central and reflex participation in the timing of locomotor activations of a bifunctional muscle, the semi-tendinosus, in the cat , 1976, Brain Research.

[12]  F. Delcomyn Neural basis of rhythmic behavior in animals. , 1980, Science.

[13]  J. Cabelguen,et al.  Main characteristics of the hindlimb locomotor cycle in the decorticate cat with special reference to bifunctional muscles , 1980, Brain Research.

[14]  S. Grillner,et al.  Entrainment of the spinal pattern generators for swimming by mechano-sensitive elements in the lamprey spinal cord in vitro , 1981, Brain Research.

[15]  S. Grillner Control of Locomotion in Bipeds, Tetrapods, and Fish , 1981 .

[16]  J. Buchanan,et al.  Activities of identified interneurons, motoneurons, and muscle fibers during fictive swimming in the lamprey and effects of reticulospinal and dorsal cell stimulation. , 1982, Journal of neurophysiology.

[17]  J. Buchanan Identification of interneurons with contralateral, caudal axons in the lamprey spinal cord: synaptic interactions and morphology. , 1982, Journal of neurophysiology.

[18]  J. Clarke,et al.  The neuroanatomy of an amphibian embryo spinal cord. , 1982, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[19]  A. Roberts,et al.  The neuromuscular basis of rhythmic struggling movements in embryos of Xenopus laevis. , 1982, The Journal of experimental biology.

[20]  S. Grillner,et al.  Mechanosensitive neurons in the spinal cord of the lamprey , 1982, Brain Research.

[21]  A. Roberts,et al.  The central nervous origin of the swimming motor pattern in embryos of Xenopus laevis. , 1982, The Journal of experimental biology.

[22]  A. Roberts,et al.  The neuromuscular basis of swimming movements in embryos of the amphibian Xenopus laevis. , 1982, The Journal of experimental biology.

[23]  P. Wallén,et al.  On the control of myotomal motoneurones during "fictive swimming" in the lamprey spinal cord in vitro. , 1983, Acta physiologica Scandinavica.

[24]  G. Carpenter,et al.  Which behavior does the lamprey central motor program mediate? , 1983, Science.

[25]  R. Harris-Warrick,et al.  Strychnine eliminates alternating motor output during fictive locomotion in the lamprey , 1984, Brain Research.

[26]  J. Clarke,et al.  Activity of commissural interneurons in spinal cord of Xenopus embryos. , 1984, Journal of neurophysiology.

[27]  A. Roberts,et al.  Excitatory amino acid receptors in Xenopus embryo spinal cord and their role in the activation of swimming. , 1984, The Journal of physiology.

[28]  S. Grillner,et al.  The edge cell, a possible intraspinal mechanoreceptor. , 1984, Science.

[29]  P. Wallén,et al.  Fictive locomotion in the lamprey spinal cord in vitro compared with swimming in the intact and spinal animal. , 1984, The Journal of physiology.

[30]  J. Clarke,et al.  Interneurones in the Xenopus embryo spinal cord: sensory excitation and activity during swimming. , 1984, The Journal of physiology.

[31]  S. Hunt,et al.  Sensory physiology, anatomy and immunohistochemistry of Rohon‐Beard neurones in embryos of Xenopus laevis. , 1984, The Journal of physiology.

[32]  P Z Myers,et al.  Spinal motoneurons of the larval zebrafish , 1985, The Journal of comparative neurology.

[33]  S. Grillner,et al.  N-methyl-d-aspartate (NMDA), kainate and quisqualate receptors and the generation of fictive locomotion in the lamprey spinal cord , 1985, Brain Research.

[34]  S. Grillner,et al.  Dorsal and ventral myotome motoneurons and their input during fictive locomotion in lamprey , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[35]  A. Roberts,et al.  Dual‐component amino‐acid‐mediated synaptic potentials: excitatory drive for swimming in Xenopus embryos. , 1985, The Journal of physiology.

[36]  N Dale,et al.  Reciprocal inhibitory interneurones in the Xenopus embryo spinal cord. , 1985, The Journal of physiology.

[37]  M. Westerfield,et al.  Development and axonal outgrowth of identified motoneurons in the zebrafish , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  M. Westerfield,et al.  Identified motoneurons and their innervation of axial muscles in the zebrafish , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[39]  A. Roberts,et al.  Descending projections and excitation during fictive swimming in Xenopus embryos: Neuroanatomy and lesion experiments , 1986, The Journal of comparative neurology.

[40]  N. Dale Excitatory synaptic drive for swimming mediated by amino acid receptors in the lamprey , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[41]  J. Fetcho,et al.  The organization of the motoneurons innervating the axial musculature of vertebrates. I. Goldfish (Carassius auratus) and mudpuppies (Necturus maculosus) , 1986, The Journal of comparative neurology.

[42]  S. Grillner,et al.  Newly identified 'glutamate interneurons' and their role in locomotion in the lamprey spinal cord. , 1987, Science.

[43]  Alan Roberts,et al.  The morphology and distribution of ‘Kolmer–Agduhr cells’, a class of cerebrospinal-fluid-contacting neurons revealed in the frog embryo spinal cord by GABA immunocytochemistry , 1987, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[44]  N. Kudo,et al.  N-Methyl-d,l-aspartate-induced locomotor activity in a spinal cord-indlimb muscles preparation of the newborn rat studied in vitro , 1987, Neuroscience Letters.

[45]  Joseph R. Fetcho,et al.  A review of the organization and evolution of motoneurons innervating the axial musculature of vertebrates , 1987, Brain Research Reviews.

[46]  S. Rossignol,et al.  Neural Control of Rhythmic Movements in Vertebrates , 1988 .

[47]  M. Westerfield,et al.  Function of identified motoneurones and co‐ordination of primary and secondary motor systems during zebra fish swimming. , 1988, The Journal of physiology.

[48]  K. Sillar,et al.  A neuronal mechanism for sensory gating during locomotion in a vertebrate , 1988, Nature.

[49]  S. Grillner,et al.  A new class of small inhibitory interneurones in the lamprey spinal cord , 1988, Brain Research.

[50]  S. Grillner,et al.  Monosynaptic excitatory amino acid transmission from the posterior rhombencephalic reticular nucleus to spinal neurons involved in the control of locomotion in lamprey. , 1989, Journal of neurophysiology.

[51]  S. Grillner,et al.  Identification of excitatory interneurons contributing to generation of locomotion in lamprey: structure, pharmacology, and function. , 1989, Journal of neurophysiology.

[52]  S. Soffe Roles of Glycinergic Inhibition and N‐Methyl‐D‐Aspartate Receptor Mediated Excitation in the Locomotor Rhythmicity of One Half of the Xenopus Embryo Central Nervous System , 1989, The European journal of neuroscience.

[53]  S. Rossignol,et al.  LOCOMOTION IN LAMPREY AND TROUT: THE RELATIVE TIMING OF ACTIVATION AND MOVEMENT , 1989 .

[54]  S. Alford,et al.  Endogenous activation of glycine and NMDA receptors in lamprey spinal cord during fictive locomotion , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[55]  A. Roberts,et al.  Mutual Re‐excitation with Post‐Inhibitory Rebound: A Simulation Study on the Mechanisms for Locomotor Rhythm Generation in the Spinal Cord of Xenopus Embryos , 1990, The European journal of neuroscience.

[56]  D. M. Schroeder,et al.  Marginal neurons in the urodele spinal cord and the associated denticulate ligaments , 1990, The Journal of comparative neurology.

[57]  S. Grillner,et al.  Synaptic effects of intraspinal stretch receptor neurons mediating movement-related feedback during locomotion , 1990, Brain Research.

[58]  K. Sillar,et al.  Characterization and Function of Spinal Excitatory Interneurons with Commissural Projections in Xenopus laevis embryos , 1990, The European journal of neuroscience.

[59]  J. Y. Kuwada,et al.  Identification of spinal neurons in the embryonic and larval zebrafish , 1990, The Journal of comparative neurology.

[60]  J. C. Smith,et al.  Role of excitatory amino acids in the generation and transmission of respiratory drive in neonatal rat. , 1991, The Journal of physiology.

[61]  J. Steeves,et al.  Locomotor activities in the decerebrate bird without phasic afferent input , 1991, Neuroscience.

[62]  L. M. Frolich,et al.  KINEMATIC AND ELECTROMYOGRAPHIC ANALYSIS OF THE FUNCTIONAL ROLE OF THE BODY AXIS DURING TERRESTRIAL AND AQUATIC LOCOMOTION IN THE SALAMANDER AMBYSTOMA TIGRINUM , 1992 .

[63]  J. Fetcho The spinal motor system in early vertebrates and some of its evolutionary changes. , 1992, Brain, behavior and evolution.

[64]  Axial motor organization in postmetamorphic tiger salamanders (Ambystoma tigrinum): a segregation of epaxial and hypaxial motor pools is not necessarily associated with terrestrial locomotion. , 1992, Brain, behavior and evolution.

[65]  S Grillner,et al.  Apamin blocks the slow AHP in lamprey and delays termination of locomotor bursts. , 1992, Neuroreport.

[66]  S. Grillner,et al.  Neural mechanisms of intersegmental coordination in lamprey: local excitability changes modify the phase coupling along the spinal cord. , 1992, Journal of neurophysiology.

[67]  James T. Buchanan,et al.  Apamin reduces the late afterhyperpolarization of lamprey spinal neurons, with little effect on fictive swimming , 1992, Neuroscience Letters.

[68]  S. Grillner,et al.  Two types of motoneurons supplying dorsal fin muscles in lamprey and their activity during fictive locomotion , 1992, The Journal of comparative neurology.

[69]  J. Buchanan,et al.  Electrophysiological properties of identified classes of lamprey spinal neurons. , 1993, Journal of neurophysiology.

[70]  J. Fetcho,et al.  Fictive swimming elicited by electrical stimulation of the midbrain in goldfish. , 1993, Journal of neurophysiology.

[71]  S. Grillner,et al.  Computer simulations of NMDA and non-NMDA receptor-mediated synaptic drive: sensory and supraspinal modulation of neurons and small networks. , 1993, Journal of neurophysiology.

[72]  A. Roberts,et al.  Spinal cord neuron classes in embryos of the smooth newt Triturus vulgaris: a horseradish peroxidase and immunocytochemical study. , 1993, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[73]  S. Grillner,et al.  Calcium-dependent potassium channels play a critical role for burst termination in the locomotor network in lamprey. , 1994, Journal of neurophysiology.

[74]  A. McClellan,et al.  Coupling of spinal locomotor networks in larval lamprey revealed by receptor blockers for inhibitory amino acids: neurophysiology and computer modeling. , 1994, Journal of neurophysiology.

[75]  M J Tunstall,et al.  A longitudinal gradient of synaptic drive in the spinal cord of Xenopus embryos and its role in co‐ordination of swimming. , 1994, The Journal of physiology.

[76]  A. Roberts,et al.  Cholinergic and electrical synapses between synergistic spinal motoneurones in the Xenopus laevis embryo. , 1995, The Journal of physiology.

[77]  J.T. Buchanan,et al.  The neuronal network for locomotion in the lamprey spinal cord: Evidence for the involvement of commissural interneurons , 1995, Journal of Physiology-Paris.

[78]  A. Roberts,et al.  Positive feedback as a general mechanism for sustaining rhythmic and non-rhythmic activity , 1995, Journal of Physiology-Paris.

[79]  A. Roberts,et al.  Cholinergic and electrical motoneuron-to-motoneuron synapses contribute to on-cycle excitation during swimming in Xenopus embryos. , 1995, Journal of neurophysiology.

[80]  C. Koch,et al.  Recurrent excitation in neocortical circuits , 1995, Science.

[81]  C. Kimmel,et al.  Stages of embryonic development of the zebrafish , 1995, Developmental dynamics : an official publication of the American Association of Anatomists.

[82]  J. Buchanan,et al.  Activities of spinal neurons during brain stem-dependent fictive swimming in lamprey. , 1995, Journal of neurophysiology.

[83]  R. Perrins,et al.  Cholinergic contribution to excitation in a spinal locomotor central pattern generator in Xenopus embryos. , 1995, Journal of neurophysiology.

[84]  A. Roberts,et al.  Effects of site of tactile stimulation on the escape swimming responses of hatchling Xenopus laevis embryos , 1995 .

[85]  E. Marder,et al.  Principles of rhythmic motor pattern generation. , 1996, Physiological reviews.

[86]  P. Katz Neurons, Networks, and Motor Behavior , 1996, Neuron.

[87]  S. Grillner,et al.  Central modulation of stretch receptor neurons during fictive locomotion in lamprey. , 1996, Journal of neurophysiology.

[88]  Local effects of glycinergic inhibition in the spinal cord motor systems for swimming in amphibian embryos. , 1996, Journal of neurophysiology.

[89]  G. Lauder,et al.  Motor patterns and kinematics during backward walking in the pacific giant salamander: evidence for novel motor output. , 1997, Journal of neurophysiology.

[90]  A. Roberts,et al.  Spinal networks controlling swimming in hatchling Xenopus tadpoles , 1997 .

[91]  S. Soffe,et al.  Neuronal firing properties and swimming motor patterns in young tadpoles of four amphibians: Xenopus, Rana, Bufo and Triturus , 1997, Journal of Comparative Physiology A.

[92]  S. Grillner,et al.  Diencephalic projection to reticulospinal neurons involved in the initiation of locomotion in adult lampreys Lampetra fluviatilis , 1997, The Journal of comparative neurology.

[93]  A. Roberts,et al.  Neurons, Networks and Motor Behaviour , 1997 .

[94]  S. Grillner,et al.  Locomotor‐Related Presynaptic Modulation of Primary Afferents in the Lamprey , 1997, The European journal of neuroscience.

[95]  S. Soffe,et al.  Roles of ascending inhibition during two rhythmic motor patterns in Xenopus tadpoles. , 1998, Journal of neurophysiology.

[96]  Alan Roberts,et al.  Motoneurons of the axial swimming muscles in hatchling Xenopus tadpoles: Features, distribution, and central synapses , 1999, The Journal of comparative neurology.

[97]  J. Cabelguen,et al.  Fictive rhythmic motor patterns induced by NMDA in an in vitro brain stem-spinal cord preparation from an adult urodele. , 1999, Journal of neurophysiology.

[98]  S. Grillner,et al.  Neuronal Control of Locomotion 'From Mollusc to Man ' , 1999 .

[99]  J. Fetcho,et al.  Laser Ablations Reveal Functional Relationships of Segmental Hindbrain Neurons in Zebrafish , 1999, Neuron.

[100]  R. Harris-Warrick,et al.  The evolution of neuronal circuits underlying species-specific behavior , 1999, Current Opinion in Neurobiology.

[101]  S. Grillner,et al.  Role of glutamate receptor subtypes in the lamprey respiratory network , 1999, Brain Research.

[102]  S. Grillner,et al.  Neural mechanisms potentially contributing to the intersegmental phase lag in lamprey , 1999, Biological Cybernetics.

[103]  J. Buchanan Commissural interneurons in rhythm generation and intersegmental coupling in the lamprey spinal cord. , 1999, Journal of neurophysiology.

[104]  R. Stein,et al.  Effects of inhibitory neurotransmitters on the mudpuppy (Necturus maculatus) locomotor pattern in vitro , 1999, Experimental Brain Research.

[105]  G. Roth,et al.  Brain Evolution and Cognition , 2000 .

[106]  S. Grillner,et al.  The activity‐dependent plasticity of segmental and intersegmental synaptic connections in the lamprey spinal cord , 2000, The European journal of neuroscience.

[107]  M. Sirota,et al.  Stimulation of the mesencephalic locomotor region elicits controlled swimming in semi‐intact lampreys , 2000, The European journal of neuroscience.

[108]  S. Currie,et al.  Right Left Hindlimb Alternation During Turtle Swimming Crossed Commissural Pathways in the Spinal Hindlimb Enlargement Are Not Necessary , 2000 .

[109]  Alan Roberts,et al.  Early functional organization of spinal neurons in developing lower vertebrates , 2000, Brain Research Bulletin.

[110]  R. Harris-Warrick,et al.  Contributions of intrinsic motor neuron properties to the production of rhythmic motor output in the mammalian spinal cord , 2000, Brain Research Bulletin.

[111]  J. Fetcho,et al.  In Vivo Imaging of Zebrafish Reveals Differences in the Spinal Networks for Escape and Swimming Movements , 2001, The Journal of Neuroscience.

[112]  E. Jankowska Spinal interneuronal systems: identification, multifunctional character and reconfigurations in mammals , 2001, The Journal of physiology.

[113]  G. Orlovsky,et al.  Non-undulatory locomotion in the lamprey , 2001, Neuroreport.

[114]  Carl van Vreeswijk,et al.  Patterns of Synchrony in Neural Networks with Spike Adaptation , 2001, Neural Computation.

[115]  A. Roberts,et al.  Defining classes of spinal interneuron and their axonal projections in hatchling Xenopus laevis tadpoles , 2001, The Journal of comparative neurology.

[116]  J. Buchanan Contributions of identifiable neurons and neuron classes to lamprey vertebrate neurobiology , 2001, Progress in Neurobiology.

[117]  E. Marder,et al.  Central pattern generators and the control of rhythmic movements , 2001, Current Biology.

[118]  Melina E. Hale,et al.  A confocal study of spinal interneurons in living larval zebrafish , 2001, The Journal of comparative neurology.

[119]  P. Drapeau,et al.  Synchronization of an Embryonic Network of Identified Spinal Interneurons Solely by Electrical Coupling , 2001, Neuron.

[120]  P. Drapeau,et al.  Synaptic drive to motoneurons during fictive swimming in the developing zebrafish. , 2001, Journal of neurophysiology.

[121]  S Grillner,et al.  Slow dorsal-ventral rhythm generator in the lamprey spinal cord. , 2001, Journal of neurophysiology.

[122]  A. Berkowitz Both shared and specialized spinal circuitry for scratching and swimming in turtles , 2002, Journal of Comparative Physiology A.

[123]  E. Neher,et al.  Vesicle pools and short-term synaptic depression: lessons from a large synapse , 2002, Trends in Neurosciences.

[124]  Alan Roberts,et al.  Spinal Inhibitory Neurons that Modulate Cutaneous Sensory Pathways during Locomotion in a Simple Vertebrate , 2002, The Journal of Neuroscience.

[125]  S. Grillner,et al.  Role of apamin-sensitive k(ca) channels for reticulospinal synaptic transmission to motoneuron and for the afterhyperpolarization. , 2002, Journal of neurophysiology.

[126]  Jean-François Vibert,et al.  Self-oscillatory dynamics in recurrent excitatory networks , 2002, Neurocomputing.

[127]  Henry Markram,et al.  Real-Time Computing Without Stable States: A New Framework for Neural Computation Based on Perturbations , 2002, Neural Computation.

[128]  Alan Roberts,et al.  The Spinal Interneurons and Properties of Glutamatergic Synapses in a Primitive Vertebrate Cutaneous Flexion Reflex , 2003, The Journal of Neuroscience.

[129]  S. Grillner The motor infrastructure: from ion channels to neuronal networks , 2003, Nature Reviews Neuroscience.

[130]  Réjean Dubuc,et al.  Nicotinic activation of reticulospinal cells involved in the control of swimming in lampreys , 2003, The European journal of neuroscience.

[131]  S. Grillner,et al.  Fast and slow locomotor burst generation in the hemispinal cord of the lamprey. , 2003, Journal of neurophysiology.

[132]  Örjan Ekeberg,et al.  From swimming to walking: a single basic network for two different behaviors , 2003, Biological Cybernetics.

[133]  J. Cabelguen,et al.  Bimodal Locomotion Elicited by Electrical Stimulation of the Midbrain in the Salamander Notophthalmus viridescens , 2003, The Journal of Neuroscience.

[134]  R. Dubuc,et al.  Differential contribution of reticulospinal cells to the control of locomotion induced by the mesencephalic locomotor region. , 2003, Journal of neurophysiology.

[135]  J. A. Kahn Patterns of synaptic inhibition in motoneurons and interneurons during fictive swimming in the lamprey, as revealed by Cl− injections , 1982, Journal of comparative physiology.

[136]  S. Soffe,et al.  Transitions between two different motor patterns in Xenopus embryos , 1996, Journal of Comparative Physiology A.

[137]  S. Grillner On the generation of locomotion in the spinal dogfish , 2004, Experimental Brain Research.

[138]  E. Marder,et al.  Similar network activity from disparate circuit parameters , 2004, Nature Neuroscience.

[139]  J. V. van Leeuwen,et al.  Swimming of larval zebrafish: ontogeny of body waves and implications for locomotory development , 2004, Journal of Experimental Biology.

[140]  S. Grillner,et al.  On the central generation of locomotion in the low spinal cat , 1979, Experimental Brain Research.

[141]  P. Wallén,et al.  The neuronal correlate of locomotion in fish , 1980, Experimental Brain Research.

[142]  Melina E. Hale,et al.  Swimming of larval zebrafish: fin–axis coordination and implications for function and neural control , 2004, Journal of Experimental Biology.

[143]  A. Roberts,et al.  Glutamate and acetylcholine corelease at developing synapses. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[144]  Alan Roberts,et al.  Primitive Roles for Inhibitory Interneurons in Developing Frog Spinal Cord , 2004, The Journal of Neuroscience.

[145]  Alan Roberts,et al.  Dorsal spinal interneurons forming a primitive, cutaneous sensory pathway. , 2004, Journal of neurophysiology.

[146]  Nicolas Brunel,et al.  Dynamics of Sparsely Connected Networks of Excitatory and Inhibitory Spiking Neurons , 2000, Journal of Computational Neuroscience.

[147]  Margaret L. T. Poon Induction of swimming in lamprey by L-DOPA and amino acids , 1980, Journal of comparative physiology.

[148]  J. Clarke,et al.  Swimming and other centrally generated motor patterns in newt embryos , 1983, Journal of comparative physiology.

[149]  Michael Schaefer,et al.  Neurotransmitter properties of spinal interneurons in embryonic and larval zebrafish , 2004, The Journal of comparative neurology.

[150]  R. Burke,et al.  Morphology of brachial segments in mudpuppy (Necturus maculosus) spinal cord studied with confocal and electron microscopy , 2004, The Journal of comparative neurology.

[151]  Igor A. Lavrov,et al.  Activation of NMDA receptors is required for the initiation and maintenance of walking-like activity in the mudpuppy (Necturus Maculatus). , 2004, Canadian journal of physiology and pharmacology.

[152]  A. Berkowitz Physiology and morphology indicate that individual spinal interneurons contribute to diverse limb movements. , 2005, Journal of neurophysiology.

[153]  W. B. Kristan,et al.  Multifunctional interneurons in behavioral circuits of the medicinal leech , 1988, Experientia.

[154]  S. Grillner,et al.  Mechanisms of Rhythm Generation in a Spinal Locomotor Network Deprived of Crossed Connections: The Lamprey Hemicord , 2005, The Journal of Neuroscience.

[155]  A. Lansner,et al.  The cortex as a central pattern generator , 2005, Nature Reviews Neuroscience.

[156]  Pavel V Zelenin,et al.  Activity of individual reticulospinal neurons during different forms of locomotion in the lamprey , 2005, The European journal of neuroscience.

[157]  M. R. Boyd,et al.  Disruption of left-right reciprocal coupling in the spinal cord of larval lamprey abolishes brain-initiated locomotor activity. , 2005, Journal of neurophysiology.

[158]  Fiona E. N. LeBeau,et al.  Microcircuits in action – from CPGs to neocortex , 2005, Trends in Neurosciences.

[159]  J. Feldman,et al.  Looking for inspiration: new perspectives on respiratory rhythm , 2006, Nature Reviews Neuroscience.

[160]  Christopher A Hinckley,et al.  Electrical Coupling between Locomotor-Related Excitatory Interneurons in the Mammalian Spinal Cord , 2006, The Journal of Neuroscience.

[161]  Yukiko Kimura,et al.  alx, a Zebrafish Homolog of Chx10, Marks Ipsilateral Descending Excitatory Interneurons That Participate in the Regulation of Spinal Locomotor Circuits , 2006, The Journal of Neuroscience.

[162]  Jorge V. José,et al.  Locomotor network modeling based on identified zebrafish neurons , 2006, Neurocomputing.

[163]  J. Cazalets,et al.  Coordinated network functioning in the spinal cord: An evolutionary perspective , 2006, Journal of Physiology-Paris.

[164]  Alan Roberts,et al.  Role of type-specific neuron properties in a spinal cord motor network , 2007, Journal of Computational Neuroscience.

[165]  O. Kiehn Locomotor circuits in the mammalian spinal cord. , 2006, Annual review of neuroscience.

[166]  P. Drapeau,et al.  Rhythmic motor activity evoked by NMDA in the spinal zebrafish larva. , 2006, Journal of neurophysiology.

[167]  Sten Grillner,et al.  Biological Pattern Generation: The Cellular and Computational Logic of Networks in Motion , 2006, Neuron.

[168]  Anders Lansner,et al.  A hemicord locomotor network of excitatory interneurons: a simulation study , 2007, Biological Cybernetics.

[169]  A. Roberts,et al.  Persistent Responses to Brief Stimuli: Feedback Excitation among Brainstem Neurons , 2006, The Journal of Neuroscience.

[170]  S. Grillner,et al.  Pattern of motor coordination underlying backward swimming in the lamprey. , 2006, Journal of neurophysiology.

[171]  Ansgar Büschges,et al.  Activity of fin muscles and fin motoneurons during swimming motor pattern in the lamprey , 2006, The European journal of neuroscience.

[172]  A. Roberts,et al.  Roles for inhibition: studies on networks controlling swimming in young frog tadpoles , 2008, Journal of Comparative Physiology A.

[173]  A. Roberts,et al.  Reconfiguration of a Vertebrate Motor Network: Specific Neuron Recruitment and Context-Dependent Synaptic Plasticity , 2007, The Journal of Neuroscience.

[174]  R. Dubuc,et al.  Respiratory rhythms generated in the lamprey rhombencephalon , 2007, Neuroscience.

[175]  A. Ijspeert,et al.  From Swimming to Walking with a Salamander Robot Driven by a Spinal Cord Model , 2007, Science.

[176]  Jean-René Cazalets,et al.  Metachronal coupling between spinal neuronal networks during locomotor activity in newborn rat , 2007, The Journal of physiology.

[177]  S. Grillner,et al.  Roles of ionic currents in lamprey CpG neurons: a modeling study. , 2007, Journal of neurophysiology.

[178]  Melina E. Hale,et al.  A topographic map of recruitment in spinal cord , 2007, Nature.

[179]  Melina E. Hale,et al.  Grading Movement Strength by Changes in Firing Intensity versus Recruitment of Spinal Interneurons , 2007, Neuron.

[180]  Auke Jan Ijspeert,et al.  Simulation and Robotics Studies of Salamander Locomotion Applying Neurobiological Principles to the Control of Locomotion in Robots , 2005 .

[181]  Ari Berkowitz,et al.  Spinal Interneurons That Are Selectively Activated during Fictive Flexion Reflex , 2007, The Journal of Neuroscience.

[182]  Jean-René Cazalets,et al.  Sequential activation of axial muscles during different forms of rhythmic behavior in man , 2008, Experimental Brain Research.

[183]  S. Grillner,et al.  Sodium‐dependent potassium channels of a Slack‐like subtype contribute to the slow afterhyperpolarization in lamprey spinal neurons , 2007, The Journal of physiology.

[184]  A. El Manira,et al.  Characterization of Na+-activated K+ currents in larval lamprey spinal cord neurons. , 2007, Journal of neurophysiology.

[185]  A. El Manira,et al.  A postsynaptic negative feedback mediated by coupling between AMPA receptors and Na+‐activated K+ channels in spinal cord neurones , 2007, The European journal of neuroscience.

[186]  S. Grillner,et al.  Diencephalic locomotor region in the lamprey--afferents and efferent control. , 2008, Journal of neurophysiology.

[187]  Ari Berkowitz,et al.  Physiology and morphology of shared and specialized spinal interneurons for locomotion and scratching. , 2008, Journal of neurophysiology.

[188]  J. Fetcho,et al.  Shared versus Specialized Glycinergic Spinal Interneurons in Axial Motor Circuits of Larval Zebrafish , 2008, The Journal of Neuroscience.

[189]  Alexander M. Walter,et al.  Locomotor pattern in the adult zebrafish spinal cord in vitro. , 2008, Journal of neurophysiology.

[190]  Eric D Tytell,et al.  Rostral versus caudal differences in mechanical entrainment of the lamprey central pattern generator for locomotion. , 2008, Journal of neurophysiology.

[191]  W. B. Lindquist,et al.  Continuous shifts in the active set of spinal interneurons during changes in locomotor speed , 2008, Nature Neuroscience.

[192]  S. Grillner,et al.  The activity of spinal commissural interneurons during fictive locomotion in the lamprey. , 2008, Journal of neurophysiology.

[193]  A. Ménard,et al.  Initiation of locomotion in lampreys , 2008, Brain Research Reviews.

[194]  L. Kaczmarek,et al.  Na+-mediated coupling between AMPA receptors and KNa channels shapes synaptic transmission , 2008, Proceedings of the National Academy of Sciences.

[195]  A. Ijspeert,et al.  Organisation of the spinal central pattern generators for locomotion in the salamander: Biology and modelling , 2008, Brain Research Reviews.

[196]  J. Fetcho,et al.  Using imaging and genetics in zebrafish to study developing spinal circuits in vivo , 2008, Developmental neurobiology.

[197]  S. Higashijima,et al.  Zebrafish and motor control over the last decade , 2008, Brain Research Reviews.

[198]  Ansgar Büschges,et al.  Neuronal Substrates for State-Dependent Changes in Coordination between Motoneuron Pools during Fictive Locomotion in the Lamprey Spinal Cord , 2008, The Journal of Neuroscience.

[199]  Pavel V Zelenin,et al.  Modifications of locomotor pattern underlying escape behavior in the lamprey. , 2008, Journal of neurophysiology.

[200]  Alan Roberts,et al.  Defining the excitatory neurons that drive the locomotor rhythm in a simple vertebrate: insights into the origin of reticulospinal control , 2009, The Journal of physiology.

[201]  Chie Satou,et al.  Functional role of a specialized class of spinal commissural inhibitory neurons during fast escapes in zebrafish , 2009, Neuroscience Research.

[202]  M. Ashley-Ross,et al.  Kinematics of level terrestrial and underwater walking in the California newt, Taricha torosa. , 2009, Journal of experimental zoology. Part A, Ecological genetics and physiology.

[203]  W. J. Heitler,et al.  Electrical coupling synchronises spinal motoneuron activity during swimming in hatchling Xenopus tadpoles , 2009, The Journal of physiology.

[204]  Alan Roberts,et al.  Locomotor rhythm maintenance: electrical coupling among premotor excitatory interneurons in the brainstem and spinal cord of young Xenopus tadpoles , 2009, The Journal of physiology.

[205]  S. Grillner,et al.  Simple cellular and network control principles govern complex patterns of motor behavior , 2009, Proceedings of the National Academy of Sciences.

[206]  Ethan K. Scott,et al.  Optogenetic dissection of a behavioral module in the vertebrate spinal cord , 2009, Nature.

[207]  Alain Frigon Reconfiguration of the spinal interneuronal network during locomotion in vertebrates. , 2009, Journal of neurophysiology.

[208]  A. Manira,et al.  Transmitter phenotypes of commissural interneurons in the lamprey spinal cord , 2009, Neuroscience.

[209]  E. Manjarrez,et al.  Propagation of Sinusoidal Electrical Waves along the Spinal Cord during a Fictive Motor Task , 2009, The Journal of Neuroscience.

[210]  Alan Roberts,et al.  Behavioral Neuroscience , 2022 .

[211]  A. Ijspeert,et al.  Axial dynamics during locomotion in vertebrates lesson from the salamander. , 2010, Progress in brain research.

[212]  Réjean Dubuc,et al.  A parallel cholinergic brainstem pathway for enhancing locomotor drive , 2010, Nature Neuroscience.

[213]  A. Ijspeert,et al.  Segmental oscillators in axial motor circuits of the salamander: distribution and bursting mechanisms. , 2010, Journal of neurophysiology.

[214]  Louis Saint-Amant,et al.  Development of motor rhythms in zebrafish embryos. , 2010, Progress in brain research.

[215]  G. R. Davis,et al.  Descending brain neurons in larval lamprey: Spinal projection patterns and initiation of locomotion , 2010, Experimental Neurology.

[216]  N. Sankrithi,et al.  Activation of a multisensory, multifunctional nucleus in the zebrafish midbrain during diverse locomotor behaviors , 2010, Neuroscience.

[217]  Alain Frigon,et al.  Evidence for Specialized Rhythm-Generating Mechanisms in the Adult Mammalian Spinal Cord , 2010, The Journal of Neuroscience.

[218]  A. Roberts,et al.  How Neurons Generate Behavior in A Hatchling Amphibian Tadpole: An Outline , 2010, Front. Behav. Neurosci..

[219]  A. Selverston,et al.  Invertebrate central pattern generator circuits , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[220]  D. Ryczko,et al.  The Transformation of a Unilateral Locomotor Command into a Symmetrical Bilateral Activation in the Brainstem , 2010, The Journal of Neuroscience.

[221]  J. Fetcho,et al.  Some principles of organization of spinal neurons underlying locomotion in zebrafish and their implications , 2010, Annals of the New York Academy of Sciences.

[222]  O. Kiehn,et al.  Activation of groups of excitatory neurons in the mammalian spinal cord or hindbrain evokes locomotion , 2010, Nature Neuroscience.

[223]  N. Schilling,et al.  Function of the epaxial muscles in walking, trotting and galloping dogs: implications for the evolution of epaxial muscle function in tetrapods , 2010, Journal of Experimental Biology.

[224]  Dimitri Ryczko,et al.  Chapter 4--supraspinal control of locomotion: the mesencephalic locomotor region. , 2011, Progress in brain research.