标签:
Contrastive Learning of Generalized Game Representations
现有的游戏AI中,越来越多地直接使用游戏画面的RGB像素点(图片)来作为游戏的表示。其中卷积神经网络常被用于进行图片处理,以得到压缩后的表征。当前一些通用的特征提取方法在应用到游戏AI时会有一些问题,比如训练计算量太大、在不同游戏间的泛化性差等。对于前一个问题,目前一般采用在预训练模型上进行微调的方法缓解。本文主要关注如何处理后一个问题,也就是泛化性的问题。
现有的游戏AI中,越来越多地直接使用游戏画面的RGB像素点(图片)来作为游戏的表示。其中卷积神经网络常被用于进行图片处理,以得到压缩后的表征。当前一些通用的特征提取方法在应用到游戏AI时会有一些问题,比如训练计算量太大、在不同游戏间的泛化性差等。对于前一个问题,目前一般采用在预训练模型上进行微调的方法缓解。本文主要关注如何处理后一个问题,也就是泛化性的问题。
Learning Invariant Representations for Reinforcement Learning without Reconstruction
这篇论文发表在2021年的ICLR,一作Amy Zhang目前在加州伯克利做博士后,她同时还在脸书AI研究部门担任科学家。论文研究了在强化学习环境下在不使用数据重构(类似autoencoder)方法时,如何得到一个好的环境编码的问题。
这篇论文发表在2021年的ICLR,一作Amy Zhang目前在加州伯克利做博士后,她同时还在脸书AI研究部门担任科学家。论文研究了在强化学习环境下在不使用数据重构(类似autoencoder)方法时,如何得到一个好的环境编码的问题。