简介: 这篇文章发表于2017年的ICML,一作是Marc G. Bellemare,现就职于Google Brain。这篇文章主要分析研究如何使用一个分布而不是单个值去进行强化学习(Reinforcement Learning, RL)。
简介: 本文已收录于2022年的S&P,一作为香港科技大学的学生。论文为云端在线学习服务提供了一个较为折中的隐私保护方案。
简介: 区块链特别是智能合约一直都是承诺交易的公开透明性。但不幸的是,此承诺远远没有达到要求。表面透明的交易之下,暗流涌动,充斥着各种竞争、攻击。本文研究了区块链系统中的自动套利机器人的行为,并分析了它们对区块链安全的可能影响。
简介: 该论文基于纯安全事件数据采用无监督的方法对安全事件做分类分级,发表于安全四大顶会S&P2022,一作Thijs van Ede是加州大学圣芭拉分校的博士生。
简介: 简介:区块链通常使用交易池来缓存接收到而尚未被包含在区块中的交易。我们知道交易是收取交易费的,而交易费并不固定,由此矿工就可以采用不同的策略来对交易进行排序,以使自己的利益最大化。本文研究了如何利用这些策略的漏洞对以太坊交易池进行拒绝服务攻击。
简介: 由于区块链的分布式特性,其上的交易天然存在一定延迟。因此,构建于其上的分布式应用就出现了需要对用户在DApp前端所见的状态与区块链上的状态之间进行同步的问题。本文测试分析了一些DApp中的链上、连下同步问题。
简介: 现有的游戏AI中,越来越多地直接使用游戏画面的RGB像素点(图片)来作为游戏的表示。其中卷积神经网络常被用于进行图片处理,以得到压缩后的表征。当前一些通用的特征提取方法在应用到游戏AI时会有一些问题,比如训练计算量太大、在不同游戏间的泛化性差等。对于前一个问题,目前一般采用在预训练模型上进行微调的方法缓解。本文主要关注如何处理后一个问题,也就是泛化性的问题。
简介: 这篇是今年 Oakland 的文章,介绍了当前许多编程语言的正则表达式库的一个遗留漏洞,并提出了一个新的解决方案。
简介: 论文是EMNLP 2021的最佳论文,论文指出了当前视觉-语言数据集的一些问题,发布了一个新的数据集。
简介: 本文发表于CCS2021,针对共享资源的云端服务器提出了一种新的杀敌一千自损八百的攻击方式:Warmonger。Warmonger利用了去服务器(serverless)计算平台在不同用户之间共享IP的特点,让第三方内容服务器拒绝响应用户的云端服务。恶意用户可以在共享IP的去服务器平台上对第三方内容服务器发出一些恶意的请求,这样第三方服务器的防火墙就可以将此IP列入黑名单,共享同一IP的其它用户此时就无法访问被攻击的第三方服务器了。本文的攻击模型并不复杂,重点偏重于测量分析。
简介: 这篇文章发表于2017年的ICML,一作是Marc G. Bellemare,现就职于Google Brain。这篇文章主要分析研究如何使用一个分布而不是单个值去进行强化学习(Reinforcement Learning, RL)。
简介: 本文已收录于2022年的S&P,一作为香港科技大学的学生。论文为云端在线学习服务提供了一个较为折中的隐私保护方案。
简介: 区块链特别是智能合约一直都是承诺交易的公开透明性。但不幸的是,此承诺远远没有达到要求。表面透明的交易之下,暗流涌动,充斥着各种竞争、攻击。本文研究了区块链系统中的自动套利机器人的行为,并分析了它们对区块链安全的可能影响。
简介: 该论文基于纯安全事件数据采用无监督的方法对安全事件做分类分级,发表于安全四大顶会S&P2022,一作Thijs van Ede是加州大学圣芭拉分校的博士生。
简介: 简介:区块链通常使用交易池来缓存接收到而尚未被包含在区块中的交易。我们知道交易是收取交易费的,而交易费并不固定,由此矿工就可以采用不同的策略来对交易进行排序,以使自己的利益最大化。本文研究了如何利用这些策略的漏洞对以太坊交易池进行拒绝服务攻击。
简介: 由于区块链的分布式特性,其上的交易天然存在一定延迟。因此,构建于其上的分布式应用就出现了需要对用户在DApp前端所见的状态与区块链上的状态之间进行同步的问题。本文测试分析了一些DApp中的链上、连下同步问题。
简介: 现有的游戏AI中,越来越多地直接使用游戏画面的RGB像素点(图片)来作为游戏的表示。其中卷积神经网络常被用于进行图片处理,以得到压缩后的表征。当前一些通用的特征提取方法在应用到游戏AI时会有一些问题,比如训练计算量太大、在不同游戏间的泛化性差等。对于前一个问题,目前一般采用在预训练模型上进行微调的方法缓解。本文主要关注如何处理后一个问题,也就是泛化性的问题。
简介: 这篇是今年 Oakland 的文章,介绍了当前许多编程语言的正则表达式库的一个遗留漏洞,并提出了一个新的解决方案。
简介: 论文是EMNLP 2021的最佳论文,论文指出了当前视觉-语言数据集的一些问题,发布了一个新的数据集。
简介: 本文发表于CCS2021,针对共享资源的云端服务器提出了一种新的杀敌一千自损八百的攻击方式:Warmonger。Warmonger利用了去服务器(serverless)计算平台在不同用户之间共享IP的特点,让第三方内容服务器拒绝响应用户的云端服务。恶意用户可以在共享IP的去服务器平台上对第三方内容服务器发出一些恶意的请求,这样第三方服务器的防火墙就可以将此IP列入黑名单,共享同一IP的其它用户此时就无法访问被攻击的第三方服务器了。本文的攻击模型并不复杂,重点偏重于测量分析。