爱吃猫的鱼

爱吃猫的鱼
[本]通信工程@河海大学 & [硕]CS@清华大学
这个人很懒,他什么也没有写!
Issued On April 29, 2022, 3:15 a.m.
Summary: 这是有限样本学习的第三方部分内容。我们考虑两种生成训练数据的方法:数据增强与生成新数据。
257
0
Issued On March 11, 2022, 5:16 p.m.
Summary: 2022 年ICRL 论文结果公布,根据我爬到的数据,最终投稿的共有2658篇论文,接收1095篇论文,接收率高达41.2%。(不得不怀疑一下灌水质量)
13005
0
Issued On March 7, 2022, 10:34 p.m.
Summary: DQN论文是 DeepMind 的研究人员在2013年发表的。一作作者Volodymyr Mnih博士毕业于多伦多大学,对人工智能领域特别是强化学习有杰出贡献。DQN的论文首次使用卷机神经网络直接处理游戏画面来进行Atari游戏的控制。
3313
0
Issued On March 4, 2022, 6:43 p.m.
Summary: 这是有限样本学习的第二部分内容。这次,我们允许使用有限的预算来进行人工打标签的工作。由于预算有限,我们必须非常谨慎地去选取待标记样本。
12038
0
Issued On Feb. 19, 2022, 12:07 a.m.
Summary: 本文给出了pytorch里面支持的所有二十几种激活函数的可视化作图。
5923
0
Issued On Dec. 23, 2021, 4:45 p.m.
Summary: 简介在监督学习中,高质量的标签是任务性能的保障。然而,给大量的数据样本打标签的代价是非常昂贵的。由此,机器学习中诞生了一些新的范式,专门用于解决在标签非常缺乏的情况下的学习问题。在这些范式中,半监督学习是一个可选方案(半监督学习仅需依赖很少部分打过标签的数据+大量无标签数据)。
5342
0
Issued On Nov. 9, 2021, 11:34 p.m.
Summary: 对比学习(Contrastive Learning)的主要思想是让相似样本表征间的距离相近,而差别很大样本表征间的距离较远。对比学习在监督学习和非监督学习中都可以使用,在许多的计算机视觉和自然语言处理相关的任务中都有很好的性能表现。
1131
0
Issued On Sept. 13, 2021, 3:59 p.m.
Summary: 在这篇文章中,我们从强化学习的基本概念开始,而后介绍一些经典的算法,带大家快速浏览强化学习世界。希望这篇文章帮助新手快速开始精彩的强化学习之旅。【注意】 这篇文章比较长哦。
8583
0

Issued On April 29, 2022, 3:15 a.m.
Summary: 这是有限样本学习的第三方部分内容。我们考虑两种生成训练数据的方法:数据增强与生成新数据。
257
0
Issued On March 11, 2022, 5:16 p.m.
Summary: 2022 年ICRL 论文结果公布,根据我爬到的数据,最终投稿的共有2658篇论文,接收1095篇论文,接收率高达41.2%。(不得不怀疑一下灌水质量)
13005
0
Issued On March 7, 2022, 10:34 p.m.
Summary: DQN论文是 DeepMind 的研究人员在2013年发表的。一作作者Volodymyr Mnih博士毕业于多伦多大学,对人工智能领域特别是强化学习有杰出贡献。DQN的论文首次使用卷机神经网络直接处理游戏画面来进行Atari游戏的控制。
3313
0
Issued On March 4, 2022, 6:43 p.m.
Summary: 这是有限样本学习的第二部分内容。这次,我们允许使用有限的预算来进行人工打标签的工作。由于预算有限,我们必须非常谨慎地去选取待标记样本。
12038
0
Issued On Feb. 19, 2022, 12:07 a.m.
Summary: 本文给出了pytorch里面支持的所有二十几种激活函数的可视化作图。
5923
0
Issued On Dec. 23, 2021, 4:45 p.m.
Summary: 简介在监督学习中,高质量的标签是任务性能的保障。然而,给大量的数据样本打标签的代价是非常昂贵的。由此,机器学习中诞生了一些新的范式,专门用于解决在标签非常缺乏的情况下的学习问题。在这些范式中,半监督学习是一个可选方案(半监督学习仅需依赖很少部分打过标签的数据+大量无标签数据)。
5342
0
Issued On Nov. 9, 2021, 11:34 p.m.
Summary: 对比学习(Contrastive Learning)的主要思想是让相似样本表征间的距离相近,而差别很大样本表征间的距离较远。对比学习在监督学习和非监督学习中都可以使用,在许多的计算机视觉和自然语言处理相关的任务中都有很好的性能表现。
1131
0
Issued On Sept. 13, 2021, 3:59 p.m.
Summary: 在这篇文章中,我们从强化学习的基本概念开始,而后介绍一些经典的算法,带大家快速浏览强化学习世界。希望这篇文章帮助新手快速开始精彩的强化学习之旅。【注意】 这篇文章比较长哦。
8583
0