Computing a proper equilibrium of a bimatrix game

We provide the first pivoting-type algorithm that computes an exact proper equilibrium of a bimatrix game. This is achieved by using Lemke’s algorithm to solve a linear complementarity problem (LCP) of polynomial size. This also proves that computing a simple refinement of proper equilibria for bimatrix game is PPADcomplete. The algorithm also computes a witness in the form of a parameterized strategy that is an ε-proper equilibrium for any given sufficiently small ε, allowing polynomial-time verification of the properties of the refined equilibrium. The same technique can be applied to matrix games (two-player zero-sum), thereby computing a parameterized ε-proper strategy in polynomial time using linear programming.

[1]  Xiaotie Deng,et al.  Settling the Complexity of Two-Player Nash Equilibrium , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[2]  Peter Bro Miltersen,et al.  Computing Proper Equilibria of Zero-Sum Games , 2006, Computers and Games.

[3]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[4]  Peter Bro Miltersen,et al.  Computing sequential equilibria for two-player games , 2006, SODA '06.

[5]  C. E. Lemke,et al.  Bimatrix Equilibrium Points and Mathematical Programming , 1965 .

[6]  lexander,et al.  THE GENERALIZED SIMPLEX METHOD FOR MINIMIZING A LINEAR FORM UNDER LINEAR INEQUALITY RESTRAINTS , 2012 .

[7]  Yoshitsugu Yamamoto,et al.  A path-following procedure to find a proper equilibrium of finite games , 1993 .

[8]  Pierre Hansen,et al.  On proper refinement of Nash equilibria for bimatrix games , 2012, Autom..

[9]  Paul W. Goldberg,et al.  The complexity of computing a Nash equilibrium , 2006, STOC '06.

[10]  Richard W. Cottle,et al.  Linear Complementarity Problem , 2009, Encyclopedia of Optimization.

[11]  Peter Bro Miltersen,et al.  Computing a quasi-perfect equilibrium of a two-player game , 2010 .

[12]  Michael J. Todd,et al.  Orientation in Complementary Pivot Algorithms , 1976, Math. Oper. Res..

[13]  M. Dresher The Mathematics of Games of Strategy: Theory and Applications , 1981 .

[14]  E. Damme Refinements of the Nash Equilibrium Concept , 1983 .

[15]  E. Szemerédi,et al.  O(n LOG n) SORTING NETWORK. , 1983 .

[16]  J. Mertens,et al.  ON THE STRATEGIC STABILITY OF EQUILIBRIA , 1986 .

[17]  John Hillas ON THE RELATION BETWEEN PERFECT EQUILIBRIA IN EXTENSIVE FORM GAMES AND PROPER EQUILIBRIA IN NORMAL FORM GAMES , 1996 .

[18]  H. W. Kuhn,et al.  11. Extensive Games and the Problem of Information , 1953 .

[19]  E. Kohlberg On the Nucleolus of a Characteristic Function Game , 1971 .

[20]  Stef Tijs,et al.  The Nucleolus of a Matrix Game and Other Nucleoli , 1992, Math. Oper. Res..

[21]  Eddie Dekel,et al.  Lexicographic Probabilities and Equilibrium Refinements , 1991 .

[22]  Peter Bro Miltersen,et al.  Fast algorithms for finding proper strategies in game trees , 2008, SODA '08.

[23]  R. Selten Reexamination of the perfectness concept for equilibrium points in extensive games , 1975, Classics in Game Theory.

[24]  L. G. H. Cijan A polynomial algorithm in linear programming , 1979 .