Small-Scale Robotics : An Introduction

The term small-scale robotics describes a wide variety of miniature robotic systems, ranging from millimeter sized devices down to autonomous mobile systems with dimensions measured in nanometers. Unified by the common goal of enabling applications that require tiny mobile robots, research in small-scaled robotics has produced a variety of novel miniature robotic systems in the last decade. As the size of the robots scale down, the physics that governs the mode of operation, power delivery, and control change dramatically, restricting how these devices operate, and requiring novel engineering solutions to enable their functionality. This chapter provides an overview and introduction to small-scale robotics, drawing parallels to systems presented later in the book. Comparison to biological systems is also presented, using biology to speculate regarding future capabilities of robotic systems at the various size scales.

[1]  Bruce Randall Donald,et al.  Planning and control for microassembly of structures composed of stress-engineered MEMS microrobots , 2013, Int. J. Robotics Res..

[2]  Justin Werfel,et al.  Anthills built to order: automating construction with artificial swarms , 2006 .

[3]  Richard Phillips Feynman,et al.  Infinitesimal machinery , 1993 .

[4]  D. Sinderen,et al.  Bacteriophage: genetics and molecular biology. , 2007 .

[5]  Malcolm Burrows,et al.  Biomechanics: Froghopper insects leap to new heights , 2003, Nature.

[6]  Oussama Khatib,et al.  Experimental Robotics IV, The 4th International Symposium, Stanford, California, USA, June 30 - July 2, 1995 , 1997, ISER.

[7]  L M Adleman,et al.  Molecular computation of solutions to combinatorial problems. , 1994, Science.

[8]  Zollikofer STEPPING PATTERNS IN ANTS - INFLUENCE OF LOAD , 1994, The Journal of experimental biology.

[9]  Sarah Bergbreiter,et al.  First leaps toward jumping microrobots , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[10]  Dario Floreano,et al.  A 10-gram vision-based flying robot , 2007, Adv. Robotics.

[11]  Metin Sitti,et al.  An untethered magnetically actuated micro-robot capable of motion on arbitrary surfaces , 2008, 2008 IEEE International Conference on Robotics and Automation.

[12]  Zollikofer STEPPING PATTERNS IN ANTS - INFLUENCE OF SPEED AND CURVATURE , 1994, The Journal of experimental biology.

[13]  Michael P. Sheetz,et al.  Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility , 1985, Cell.

[14]  N. Seeman Nucleic Acid Nanostructures and Topology. , 1998, Angewandte Chemie.

[15]  Ronald S. Fearing,et al.  RoACH: An autonomous 2.4g crawling hexapod robot , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[16]  Ernest,et al.  Enzymatic synthesis of deoxyribonucleic acid. , 1969, Harvey lectures.

[17]  Paolo Corradi,et al.  Evaluation of building technology for mass producible millimetre-sized robots using flexible printed circuit boards , 2009 .

[18]  S. Bedair,et al.  Piezoelectric PZT MEMS technologies for small-scale robotics and RF applications , 2012 .

[19]  H. Miura,et al.  Insect-like microrobots with external skeletons , 1993, IEEE Control Systems.

[20]  M. Sitti,et al.  Chemotactic steering of bacteria propelled microbeads , 2012, Biomedical Microdevices.

[21]  Richard P. Feynman There's plenty of room at the bottom [data storage] , 1992, Journal of Microelectromechanical Systems.

[22]  David J. Cappelleri,et al.  A novel micro-scale magnetic tumbling microrobot , 2013 .

[23]  R. Feynman There's plenty of room at the bottom , 1999 .

[24]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[25]  S. Bergbreiter,et al.  The First Launch of an Autonomous Thrust-Driven Microrobot Using Nanoporous Energetic Silicon , 2012, Journal of Microelectromechanical Systems.

[26]  Bradley J. Nelson,et al.  Actuation, Sensing, and Fabrication for In Vivo Magnetic Microrobots , 2004, ISER.

[27]  Sylvain Martel,et al.  Fundamental Principles and Issues of High-speed Piezoactuated Three-legged Motion for Miniature Robots Designed for Nanometer-scale Operations , 2005, Int. J. Robotics Res..

[28]  Dominic R. Frutiger,et al.  Magmites - wireless resonant magnetic microrobots , 2008, 2008 IEEE International Conference on Robotics and Automation.

[29]  William S. N. Trimmer,et al.  Microrobots and micromechanical systems , 1989 .

[30]  K. Pister,et al.  Solar powered 10 mg silicon robot , 2003, The Sixteenth Annual International Conference on Micro Electro Mechanical Systems, 2003. MEMS-03 Kyoto. IEEE.

[31]  Stephane Regnier,et al.  Micro manipulation by adhesion with two collaborating mobile micro robots , 2005 .

[32]  T. Shimmen,et al.  Functional characterization of contractile vacuole isolated from Amoeba proteus. , 2004, Cell structure and function.

[33]  Seth Copen Goldstein,et al.  Stress-driven MEMS assembly + electrostatic forces = 1mm diameter robot , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[34]  Robert J. Wood,et al.  Sensors and Actuators A: Physical , 2009 .

[35]  Mark E. Davis,et al.  Polycation-siRNA nanoparticles can disassemble at the kidney glomerular basement membrane , 2012, Proceedings of the National Academy of Sciences.

[36]  Mark E. Davis The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. , 2009, Molecular pharmaceutics.

[37]  Daniel E. Koditschek,et al.  RHex: A Simple and Highly Mobile Hexapod Robot , 2001, Int. J. Robotics Res..

[38]  J Fraser Stoddart,et al.  A molecular shuttle. , 1991, Journal of the American Chemical Society.

[39]  P. Dario,et al.  Capsule Endoscopy: From Current Achievements to Open Challenges , 2011, IEEE Reviews in Biomedical Engineering.

[40]  Yang Wang,et al.  A prototype mobile sensor network for structural health monitoring , 2009, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[41]  Randy H. Katz,et al.  Emerging challenges: Mobile networking for “Smart Dust” , 2000, Journal of Communications and Networks.

[42]  Ravi Kumar M.N.V. Nano and microparticles as controlled drug delivery devices. , 2000 .

[43]  Exposition Sensors and Actuators 1985 , 1985 .

[44]  T. Schultz In search of ant ancestors. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Nathan J. Jenness,et al.  Towards Holonomic Control of Janus Particles in Optomagnetic Traps , 2009, Advanced materials.

[46]  Erik Winfree,et al.  Molecular robots guided by prescriptive landscapes , 2010, Nature.

[47]  Aaron Trent Becker,et al.  Ensemble control of robotic systems , 2012 .

[48]  Aaron P. Gerratt,et al.  Incorporating compliant elastomers for jumping locomotion in microrobots , 2012 .

[49]  Bruce Randall Donald,et al.  Power delivery and locomotion of untethered micro-actuators , 2003, The Sixteenth Annual International Conference on Micro Electro Mechanical Systems, 2003. MEMS-03 Kyoto. IEEE.

[50]  Craig D. McGray,et al.  Power delivery and locomotion of untethered microactuators , 2003 .

[51]  J. F. Stoddart,et al.  A chemically and electrochemically switchable molecular shuttle , 1994, Nature.

[52]  Chen Chen,et al.  An Ultracompact Dual-Stage Converter for Driving Electrostatic Actuators in Mobile Microrobots , 2014, IEEE Transactions on Power Electronics.

[53]  J. Tour,et al.  Directional control in thermally driven single-molecule nanocars. , 2005, Nano letters.

[54]  D. Castro,et al.  Development of untethered SU-8 polymer scratch drive microrobots , 2011, 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems.

[55]  A. M. Flynn,et al.  Gnat Robots (And How They Will Change Robotics) , 1987 .

[56]  Mark E. Davis,et al.  Targeting kidney mesangium by nanoparticles of defined size , 2011, Proceedings of the National Academy of Sciences.

[57]  B.R. Donald,et al.  An untethered, electrostatic, globally controllable MEMS micro-robot , 2006, Journal of Microelectromechanical Systems.

[58]  B.R. Donald,et al.  Planar Microassembly by Parallel Actuation of MEMS Microrobots , 2008, Journal of Microelectromechanical Systems.

[59]  Ronald D Vale,et al.  Cell cycle-dependent dynamics and regulation of mitotic kinesins in Drosophila S2 cells. , 2005, Molecular biology of the cell.

[60]  Isao Shimoyama,et al.  Microrobot actuated by a vibration energy field , 1994 .

[61]  Kevin Y. Ma,et al.  Controlled Flight of a Biologically Inspired, Insect-Scale Robot , 2013, Science.

[62]  O. Schmidt,et al.  The smallest man-made jet engine. , 2011, Chemical record.

[63]  A. Khademhosseini,et al.  Microscale technologies for tissue engineering and biology. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[64]  Sylvain Martel,et al.  Bacterial microsystems and microrobots , 2012, Biomedical Microdevices.

[65]  Michael H Dickinson,et al.  Fly Flight A Model for the Neural Control of Complex Behavior , 2001, Neuron.

[66]  I. R. Lehnman,et al.  DNA Ligase: Structure, Mechanism, and Function , 1974, Science.

[67]  Douglas W. Gage,et al.  How to communicate with zillions of robots , 1994, Other Conferences.

[68]  I. Lehman,et al.  Enzymatic synthesis of deoxyribonucleic acid. I. Preparation of substrates and partial purification of an enzyme from Escherichia coli. , 1958, The Journal of biological chemistry.

[69]  Vijay Kumar,et al.  Robot and sensor networks for first responders , 2004, IEEE Pervasive Computing.

[70]  Seth Copen Goldstein,et al.  Claytronics: A Scalable Basis For Future Robots , 2004 .

[71]  Dan O. Popa,et al.  Micro and Mesoscale Robotic Assembly , 2004 .

[72]  Sarah Bergbreiter,et al.  TinyTeRP: A Tiny Terrestrial Robotic Platform with modular sensing , 2013, 2013 IEEE International Conference on Robotics and Automation.

[73]  Fritz-Olaf Lehmann,et al.  Walking on inclines: energetics of locomotion in the ant Camponotus , 2005, Journal of Experimental Biology.

[74]  Ming C. Wu,et al.  Massively parallel manipulation of single cells and microparticles using optical images , 2005, Nature.

[75]  K.S.J. Pister,et al.  Robot leg motion in a planarized-SOI, two-layer poly-Si process , 2005, Journal of Microelectromechanical Systems.

[76]  Viola Vogel,et al.  Light-Controlled Molecular Shuttles Made from Motor Proteins Carrying Cargo on Engineered Surfaces , 2001 .

[77]  Mohammad Ilyas,et al.  Smart Dust , 2006 .

[78]  Harry E. Stephanou,et al.  Micro and Meso Scale Robotic Assembly , 2004 .

[79]  G. Whitesides,et al.  Self-Assembly at All Scales , 2002, Science.

[80]  Jonathan E. Clark,et al.  iSprawl: Design and Tuning for High-speed Autonomous Open-loop Running , 2006, Int. J. Robotics Res..

[81]  T. Kiørboe,et al.  The Kinematics of Swimming and Relocation Jumps in Copepod Nauplii , 2012, PloS one.

[82]  Robert J. Wood,et al.  The First Takeoff of a Biologically Inspired At-Scale Robotic Insect , 2008, IEEE Transactions on Robotics.

[83]  S. Martel,et al.  Controlled Bacterial Micro-actuation , 2006, 2006 International Conference on Microtechnologies in Medicine and Biology.

[84]  Mark Rentschler,et al.  Vision and Task Assistance Using Modular Wireless In Vivo Surgical Robots , 2009, IEEE Transactions on Biomedical Engineering.

[85]  P. Fischer,et al.  Controlled propulsion of artificial magnetic nanostructured propellers. , 2009, Nano letters.

[86]  Ivan Penskiy,et al.  Optimized electrostatic inchworm motors using a flexible driving arm , 2012 .

[87]  J. P. Whitney,et al.  Pop-up book MEMS , 2011 .

[88]  E. Purcell Life at Low Reynolds Number , 2008 .