Inference of neuronal functional circuitry with spike-triggered non-negative matrix factorization

Neurons in sensory systems often pool inputs over arrays of presynaptic cells, giving rise to functional subunits inside a neuron’s receptive field. The organization of these subunits provides a signature of the neuron’s presynaptic functional connectivity and determines how the neuron integrates sensory stimuli. Here we introduce the method of spike-triggered non-negative matrix factorization for detecting the layout of subunits within a neuron’s receptive field. The method only requires the neuron’s spiking responses under finely structured sensory stimulation and is therefore applicable to large populations of simultaneously recorded neurons. Applied to recordings from ganglion cells in the salamander retina, the method retrieves the receptive fields of presynaptic bipolar cells, as verified by simultaneous bipolar and ganglion cell recordings. The identified subunit layouts allow improved predictions of ganglion cell responses to natural stimuli and reveal shared bipolar cell input into distinct types of ganglion cells.How a neuron integrates sensory information requires knowledge about its functional presynaptic connections. Here the authors report a new method using non-negative matrix factorization to identify the layout of presynaptic bipolar cell inputs onto retinal ganglion cells and predict their responses to natural stimuli.

[1]  Fred Rieke,et al.  The spatial structure of a nonlinear receptive field , 2012, Nature Neuroscience.

[2]  Eero P. Simoncelli,et al.  A Convolutional Subunit Model for Neuronal Responses in Macaque V1 , 2015, The Journal of Neuroscience.

[3]  J. Eggert,et al.  Sparse coding and NMF , 2004, 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541).

[4]  Stefano Panzeri,et al.  Using Matrix and Tensor Factorizations for the Single-Trial Analysis of Population Spike Trains , 2016, PLoS Comput. Biol..

[5]  Douglas S Kim,et al.  Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration , 2008, Nature Neuroscience.

[6]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[7]  Tim Gollisch,et al.  Eye Smarter than Scientists Believed: Neural Computations in Circuits of the Retina , 2010, Neuron.

[8]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[9]  E J Chichilnisky,et al.  A simple white noise analysis of neuronal light responses , 2001, Network.

[10]  Michael J. Berry,et al.  Identifying Functional Bases for Multidimensional Neural Computations , 2013, Neural Computation.

[11]  Yuwei Cui,et al.  Inferring Nonlinear Neuronal Computation Based on Physiologically Plausible Inputs , 2013, PLoS Comput. Biol..

[12]  T. Gollisch,et al.  Joint Encoding of Object Motion and Motion Direction in the Salamander Retina , 2016, The Journal of Neuroscience.

[13]  Jonathon Shlens,et al.  Receptive Fields in Primate Retina Are Coordinated to Sample Visual Space More Uniformly , 2009, PLoS biology.

[14]  J. Gallant,et al.  A Three-Dimensional Spatiotemporal Receptive Field Model Explains Responses of Area MT Neurons to Naturalistic Movies , 2011, The Journal of Neuroscience.

[15]  F. Rieke,et al.  Nonlinear spatial encoding by retinal ganglion cells: when 1 + 1 ≠ 2 , 2011, The Journal of general physiology.

[16]  Matthias Bethge,et al.  The functional diversity of retinal ganglion cells in the mouse , 2015, Nature.

[17]  Surya Ganguli,et al.  Deep Learning Models of the Retinal Response to Natural Scenes , 2017, NIPS.

[18]  Richard H. Masland,et al.  Receptive Field Microstructure and Dendritic Geometry of Retinal Ganglion Cells , 2000, Neuron.

[19]  J. Marvin,et al.  Two-Photon Imaging of Nonlinear Glutamate Release Dynamics at Bipolar Cell Synapses in the Mouse Retina , 2013, The Journal of Neuroscience.

[20]  Siegrid Löwel,et al.  Restoring the ON Switch in Blind Retinas: Opto-mGluR6, a Next-Generation, Cell-Tailored Optogenetic Tool , 2015, PLoS biology.

[21]  R. Masland,et al.  Spatial scale and cellular substrate of contrast adaptation by retinal ganglion cells , 2001, Nature Neuroscience.

[22]  Eric D Young,et al.  Non-linearities and the representation of auditory spectra. , 2005, International review of neurobiology.

[23]  Eero P. Simoncelli,et al.  Testing pseudo-linear models of responses to natural scenes in primate retina , 2016, bioRxiv.

[24]  Jian K. Liu,et al.  Spike-Triggered Covariance Analysis Reveals Phenomenological Diversity of Contrast Adaptation in the Retina , 2015, PLoS Comput. Biol..

[25]  J. Sanes,et al.  The most numerous ganglion cell type of the mouse retina is a selective feature detector , 2012, Proceedings of the National Academy of Sciences.

[26]  Olivier Marre,et al.  Targeting channelrhodopsin-2 to ON-bipolar cells with vitreally administered AAV Restores ON and OFF visual responses in blind mice. , 2015, Molecular therapy : the journal of the American Society of Gene Therapy.

[27]  M. V. Van Benthem,et al.  Fast algorithm for the solution of large‐scale non‐negativity‐constrained least squares problems , 2004 .

[28]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[29]  Hiroki Asari,et al.  The Projective Field of Retinal Bipolar Cells and Its Modulation by Visual Context , 2014, Neuron.

[30]  Eero P. Simoncelli,et al.  Spatiotemporal Elements of Macaque V1 Receptive Fields , 2005, Neuron.

[31]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[32]  Srinivas C. Turaga,et al.  Connectomic reconstruction of the inner plexiform layer in the mouse retina , 2013, Nature.

[33]  Andriana Olmos,et al.  A biologically inspired algorithm for the recovery of shading and reflectance images , 2004 .

[34]  J. Movshon,et al.  Receptive field organization of complex cells in the cat's striate cortex. , 1978, The Journal of physiology.

[35]  Timothy A. Machado,et al.  Functional connectivity in the retina at the resolution of photoreceptors , 2010, Nature.

[36]  Eero P. Simoncelli,et al.  Mapping nonlinear receptive field structure in primate retina at single cone resolution , 2015, eLife.

[37]  Michael J. Berry,et al.  Mapping a Complete Neural Population in the Retina , 2012, The Journal of Neuroscience.

[38]  Rava Azeredo da Silveira,et al.  Cell Types, Circuits, Computation , 2011, Current Opinion in Neurobiology.

[39]  Michael J. Berry,et al.  Functional organization of ganglion cells in the salamander retina. , 2006, Journal of neurophysiology.

[40]  Fan Gao,et al.  Functional Architecture of Synapses in the Inner Retina: Segregation of Visual Signals by Stratification of Bipolar Cell Axon Terminals , 2000, The Journal of Neuroscience.

[41]  Timothy J. Blanche,et al.  Construction of Direction Selectivity through Local Energy Computations in Primary Visual Cortex , 2013, PloS one.

[42]  Tim Gollisch,et al.  Sensitivity to image recurrence across eye-movement-like image transitions through local serial inhibition in the retina , 2017, eLife.

[43]  Inés Samengo,et al.  Spike-triggered covariance: geometric proof, symmetry properties, and extension beyond Gaussian stimuli , 2012, Journal of Computational Neuroscience.

[44]  C. Enroth-Cugell,et al.  The contrast sensitivity of retinal ganglion cells of the cat , 1966, The Journal of physiology.

[45]  M. Meister,et al.  Neural Circuit Inference from Function to Structure , 2017, Current Biology.

[46]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[47]  Katja Reinhard,et al.  Step-By-Step Instructions for Retina Recordings with Perforated Multi Electrode Arrays , 2014, PloS one.

[48]  Tim Gollisch,et al.  Local and Global Contrast Adaptation in Retinal Ganglion Cells , 2013, Neuron.

[49]  Stephen A. Baccus,et al.  A Retinal Circuit That Computes Object Motion , 2008, The Journal of Neuroscience.

[50]  M. Meister,et al.  Divergence of visual channels in the inner retina , 2012, Nature Neuroscience.

[51]  Chris H. Q. Ding,et al.  Convex and Semi-Nonnegative Matrix Factorizations , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[52]  Fred Rieke,et al.  Synaptic Rectification Controls Nonlinear Spatial Integration of Natural Visual Inputs , 2016, Neuron.

[53]  Bevil R. Conway,et al.  Spatiotemporal Structure of Nonlinear Subunits in Macaque Visual Cortex , 2006, The Journal of Neuroscience.

[54]  Tim Gollisch,et al.  Closed-Loop Measurements of Iso-Response Stimuli Reveal Dynamic Nonlinear Stimulus Integration in the Retina , 2012, Neuron.

[55]  Gilles Laurent,et al.  Using noise signature to optimize spike-sorting and to assess neuronal classification quality , 2002, Journal of Neuroscience Methods.

[56]  Yves Frégnac,et al.  Hidden Complexity of Synaptic Receptive Fields in Cat V1 , 2014, The Journal of Neuroscience.

[57]  R. Shapley,et al.  The nonlinear pathway of Y ganglion cells in the cat retina , 1979, The Journal of general physiology.

[58]  Matthias Bethge,et al.  Beyond GLMs: A Generative Mixture Modeling Approach to Neural System Identification , 2012, PLoS Comput. Biol..

[59]  Hyunsoo Kim,et al.  Nonnegative Matrix Factorization Based on Alternating Nonnegativity Constrained Least Squares and Active Set Method , 2008, SIAM J. Matrix Anal. Appl..

[60]  Alioune Ngom,et al.  The non-negative matrix factorization toolbox for biological data mining , 2013, Source Code for Biology and Medicine.

[61]  Srinivas C. Turaga,et al.  Space-time wiring specificity supports direction selectivity in the retina , 2014, Nature.

[62]  Rava Azeredo da Silveira,et al.  Approach sensitivity in the retina processed by a multifunctional neural circuit , 2009, Nature Neuroscience.

[63]  Eero P. Simoncelli,et al.  How MT cells analyze the motion of visual patterns , 2006, Nature Neuroscience.

[64]  Stephen A. Baccus,et al.  Segregation of object and background motion in the retina , 2003, Nature.

[65]  Eero P. Simoncelli,et al.  Spike-triggered neural characterization. , 2006, Journal of vision.

[66]  Surya Ganguli,et al.  Inferring hidden structure in multilayered neural circuits , 2017, bioRxiv.

[67]  H. Barlow,et al.  The mechanism of directionally selective units in rabbit's retina. , 1965, The Journal of physiology.

[68]  J. B. Demb,et al.  Bipolar Cells Contribute to Nonlinear Spatial Summation in the Brisk-Transient (Y) Ganglion Cell in Mammalian Retina , 2001, The Journal of Neuroscience.

[69]  Hyunsoo Kim,et al.  Sparse Non-negative Matrix Factorizations via Alternating Non-negativity-constrained Least Squares , 2006 .

[70]  Fred Rieke,et al.  Nonlinear Spatiotemporal Integration by Electrical and Chemical Synapses in the Retina , 2016, Neuron.