Toward a Theory of Visual Consciousness

The visual brain consists of several parallel, functionally specialized processing systems, each having several stages (nodes) which terminate their tasks at different times; consequently, simultaneously presented attributes are perceived at the same time if processed at the same node and at different times if processed by different nodes. Clinical evidence shows that these processing systems can act fairly autonomously. Damage restricted to one system compromises specifically the perception of the attribute that that system is specialized for; damage to a given node of a processing system that leaves earlier nodes intact results in a degraded perceptual capacity for the relevant attribute, which is directly related to the physiological capacities of the cells left intact by the damage. By contrast, a system that is spared when all others are damaged can function more or less normally. Moreover, internally created visual percepts-illusions, afterimages, imagery, and hallucinations-activate specifically the nodes specialized for the attribute perceived. Finally, anatomical evidence shows that there is no final integrator station in the brain, one which receives input from all visual areas; instead, each node has multiple outputs and no node is recipient only. Taken together, the above evidence leads us to propose that each node of a processing-perceptual system creates its own microconsciousness. We propose that, if any binding occurs to give us our integrated image of the visual world, it must be a binding between microconsciousnesses generated at different nodes. Since any two microconsciousnesses generated at any two nodes can be bound together, perceptual integration is not hierarchical, but parallel and postconscious. By contrast, the neural machinery conferring properties on those cells whose activity has a conscious correlate is hierarchical, and we refer to it as generative binding, to distinguish it from the binding that might occur between the microconsciousnesses.

[1]  K. Rockland,et al.  Direct temporal-occipital feedback connections to striate cortex (V1) in the macaque monkey. , 1994, Cerebral cortex.

[2]  S. Zeki,et al.  ■ REVIEW : Parallel Processing, Asynchronous Perception, and a Distributed System of Consciousness in Vision , 1998 .

[3]  F Michel,et al.  [Prosopagnosia without hemianopsia after unilateral right occipitotemporal lesion]. , 1986, Revue neurologique.

[4]  S. Zeki,et al.  Functional specialization and binocular interaction in the visual areas of rhesus monkey prestriate cortex , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[5]  S. Zeki The distribution of wavelength and orientation selective cells in different areas of monkey visual cortex , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[6]  R. Desimone,et al.  Visual properties of neurons in area V4 of the macaque: sensitivity to stimulus form. , 1987, Journal of neurophysiology.

[7]  A. Kertesz Visual Agnosia: The Dual Deficit of Perception and Recognition , 1979, Cortex.

[8]  S. Zeki,et al.  Three cortical stages of colour processing in the human brain. , 1998, Brain : a journal of neurology.

[9]  S Zeki,et al.  Conscious visual perception without V1. , 1993, Brain : a journal of neurology.

[10]  T. Nealey,et al.  Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[11]  I. S. Wechsler PARTIAL CORTICAL BLINDNESS WITH PRESERVATION OF COLOR VISION: REPORT OF CASE FOLLOWING ASPHYXIA (CARBON MONOXIDE POISONING?) , 1934 .

[12]  A. Adler Course and outcome of visual agnosia. , 1950, The Journal of nervous and mental disease.

[13]  S. Zeki Representation of central visual fields in prestriate cortex of monkey. , 1969, Brain research.

[14]  Leslie G. Ungerleider,et al.  Mechanisms of directed attention in the human extrastriate cortex as revealed by functional MRI. , 1998, Science.

[15]  J Zihl,et al.  The "motion-blind" patient: low-level spatial and temporal filters , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[16]  E. Adelson,et al.  The analysis of moving visual patterns , 1985 .

[17]  S. Zeki,et al.  The Organization of Connections between Areas V5 and V2 in Macaque Monkey Visual Cortex , 1989, The European journal of neuroscience.

[18]  Israel S. Wechsler,et al.  PARTIAL CORTICAL BLINDNESS WITH PRESERVATION OF COLOR VISION: REPORT OF A CASE FOLLOWING ASPHYXIA (CARBON MONOXIDE POISONING?); A CONSIDERATION OF THE QUESTION OF COLOR VISION AND ITS CORTICAL LOCALIZATION , 1933 .

[19]  S. Zeki,et al.  The neurological basis of conscious color perception in a blind patient. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[20]  S. R. Butler,et al.  The effects of V4 lesions on the visual abilities of macaques: hue discrimination and colour constancy , 1993, Behavioural Brain Research.

[21]  D. C. Van Essen,et al.  Concurrent processing streams in monkey visual cortex , 1988, Trends in Neurosciences.

[22]  R H Wurtz,et al.  Functional specialization for visual motion processing in primate cerebral cortex. , 1990, Cold Spring Harbor symposia on quantitative biology.

[23]  S. Zeki,et al.  The Riddoch syndrome: insights into the neurobiology of conscious vision. , 1998, Brain : a journal of neurology.

[24]  Semir Zeki,et al.  The theory of multistage integration in the visual brain , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[25]  S. Zeki,et al.  The consequences of inactivating areas V1 and V5 on visual motion perception. , 1995, Brain : a journal of neurology.

[26]  J. B. Levitt,et al.  Comparison of intrinsic connectivity in different areas of macaque monkey cerebral cortex. , 1993, Cerebral cortex.

[27]  Peter H. Schiller,et al.  Past and Present Ideas About How the Visual Scene Is Analyzed by the Brain , 1997 .

[28]  A. Leventhal,et al.  Concomitant sensitivity to orientation, direction, and color of cells in layers 2, 3, and 4 of monkey striate cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[29]  F. Newcombe,et al.  Chromatic Discrimination in a Cortically Colour Blind Observer , 1991, The European journal of neuroscience.

[30]  S. Henschen ON THE VISUAL PATH AND CENTRE , 1893 .

[31]  R. Thouless Experimental Psychology , 1939, Nature.

[32]  D. Hubel,et al.  Ferrier lecture - Functional architecture of macaque monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[33]  R. Desimone,et al.  Prestriate afferents to inferior temporal cortex: an HRP study , 1980, Brain Research.

[34]  J. Lund,et al.  Intrinsic laminar lattice connections in primate visual cortex , 1983, The Journal of comparative neurology.

[35]  D. C. Essen,et al.  The topographic organization of rhesus monkey prestriate cortex. , 1978, The Journal of physiology.

[36]  A. Dale,et al.  New images from human visual cortex , 1996, Trends in Neurosciences.

[37]  S. Zeki,et al.  The third visual complex of rhesus monkey prestriate cortex. , 1978, The Journal of physiology.

[38]  Richard S. J. Frackowiak,et al.  Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. , 1993, Cerebral cortex.

[39]  G. Poggio,et al.  Stereoscopic mechanisms in monkey visual cortex: binocular correlation and disparity selectivity , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[40]  A. Treisman,et al.  Illusory conjunctions in the perception of objects , 1982, Cognitive Psychology.

[41]  L. Benevento,et al.  The cortical projections of the inferior pulvinar and adjacent lateral pulvinar in the rhesus monkey (macaca mulatta): An autoradiographic study , 1976, Brain Research.

[42]  J. Movshon,et al.  The analysis of visual motion: a comparison of neuronal and psychophysical performance , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[43]  G. Riddoch DISSOCIATION OF VISUAL PERCEPTIONS DUE TO OCCIPITAL INJURIES, WITH ESPECIAL REFERENCE TO APPRECIATION OF MOVEMENT , 1917 .

[44]  M Mishkin,et al.  A role for the corpus callosum in visual area V4 of the macaque , 1993, Visual Neuroscience.

[45]  S. Zeki Colour coding in the cerebral cortex: The reaction of cells in monkey visual cortex to wavelengths and colours , 1983, Neuroscience.

[46]  R. Tootell,et al.  Anatomical evidence for MT and additional cortical visual areas in humans. , 1995, Cerebral cortex.

[47]  M. Botez,et al.  Course and outcome of visual static agnosia. , 1967, Journal of the neurological sciences.

[48]  N. Mai,et al.  Selective disturbance of movement vision after bilateral brain damage. , 1983, Brain : a journal of neurology.

[49]  Victor A. F. Lamme,et al.  Neuronal synchrony does not represent texture segregation , 1998, Nature.

[50]  G. Holmes DISTURBANCES OF VISION BY CEREBRAL LESIONS , 1918, The British journal of ophthalmology.

[51]  C. Koch,et al.  Towards a neurobiological theory of consciousness , 1990 .

[52]  S Zeki,et al.  The brain activity related to residual motion vision in a patient with bilateral lesions of V5. , 1994, Brain : a journal of neurology.

[53]  E H Land,et al.  An alternative technique for the computation of the designator in the retinex theory of color vision. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[54]  K R Gegenfurtner,et al.  Processing of color, form, and motion in macaque area V2 , 1996, Visual Neuroscience.

[55]  Michael S. Gazzaniga,et al.  Acquired central dyschromatopsia: Analysis of a case with preservation of color discrimination , 1989 .

[56]  Edward T. Bullmore,et al.  A direct demonstration of functional specialization within motion-related visual and auditory cortex of the human brain , 1996, Current Biology.

[57]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[58]  Karl R. Gegenfurtner Visual neurobiology: Colouring the cortex , 1997, Nature.

[59]  D. Hubel,et al.  Anatomy and physiology of a color system in the primate visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[60]  Rüdiger von der Heydt,et al.  Approaches to visual cortical function. , 1987 .

[61]  L M Vaina,et al.  Functional segregation of color and motion processing in the human visual cortex: clinical evidence. , 1994, Cerebral cortex.

[62]  P. Lennie,et al.  Chromatic mechanisms in striate cortex of macaque , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[63]  C. Gross,et al.  Afferent basis of visual response properties in area MT of the macaque. I. Effects of striate cortex removal , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[64]  D. Ffytche,et al.  The anatomy of conscious vision: an fMRI study of visual hallucinations , 1998, Nature Neuroscience.

[65]  A. Cowey,et al.  Cortical area V4 and its role in the perception of color , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[66]  Leslie G. Ungerleider,et al.  The modular organization of projections from areas V1 and V2 to areas V4 and TEO in macaques , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[67]  C. Koch,et al.  Are we aware of neural activity in primary visual cortex? , 1995, Nature.

[68]  M. B. Bender,et al.  The so-called "visual agnosias". , 1972, Brain : a journal of neurology.

[69]  Alan Cowey,et al.  With color in mind , 1998, Nature Neuroscience.

[70]  Karl J. Friston,et al.  A direct demonstration of functional specialization in human visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[71]  K. Rockland,et al.  A reticular pattern of intrinsic connections in primate area V2 (area 18) , 1985, The Journal of comparative neurology.

[72]  S. Zeki,et al.  Modular Connections between Areas V2 and V4 of Macaque Monkey Visual Cortex , 1989, The European journal of neuroscience.

[73]  E. Marg A VISION OF THE BRAIN , 1994 .

[74]  S. Zeki,et al.  A century of cerebral achromatopsia. , 1990, Brain : a journal of neurology.

[75]  S. Zeki,et al.  The asynchrony of consciousness , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[76]  S. Zeki,et al.  The cortical site for the generation of forms from motion , 1998, NeuroImage.

[77]  S Zeki,et al.  The clinical and functional measurement of cortical (in)activity in the visual brain, with special reference to the two subdivisions (V4 and V4 alpha) of the human colour centre. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[78]  P. Cairney Bisensory order judgement and the prior entry hypothesis. , 1975, Acta psychologica.

[79]  G. Holmes Ferrier Lecture - The organization of the visual cortex in man , 1945, Proceedings of the Royal Society of London. Series B - Biological Sciences.

[80]  Leslie G. Ungerleider,et al.  Contour, color and shape analysis beyond the striate cortex , 1985, Vision Research.

[81]  Michael J. Hawken,et al.  Macaque VI neurons can signal ‘illusory’ contours , 1993, Nature.

[82]  DH Hubel,et al.  Segregation of form, color, and stereopsis in primate area 18 , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[83]  S. Zeki Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey , 1974, The Journal of physiology.

[84]  W Singer,et al.  Consciousness and the structure of neuronal representations. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[85]  Andreas K. Engel,et al.  Temporal Binding, Binocular Rivalry, and Consciousness , 1999, Consciousness and Cognition.

[86]  Jean Bullier,et al.  The Role of Area 17 in the Transfer of Information to Extrastriate Visual Cortex , 1994 .

[87]  C. Koch,et al.  Some reflections on visual awareness. , 1990, Cold Spring Harbor symposia on quantitative biology.

[88]  C. Pallis Impaired identification of faces and places with agnosia for colours. Report of a case due to cerebral embolism , 1996 .

[89]  P Corcia,et al.  [Cerebral achromatopsia without prosopagnosia, alexia, object agnosia]. , 1997, Revue neurologique.

[90]  S. Edelman,et al.  Cue-Invariant Activation in Object-Related Areas of the Human Occipital Lobe , 1998, Neuron.

[91]  A. Linksz Outlines of a Theory of the Light Sense. , 1965 .

[92]  S. Shipp,et al.  The functional logic of cortical connections , 1988, Nature.

[93]  S. Zeki,et al.  Segregation and convergence of specialised pathways in macaque monkey visual cortex. , 1995, Journal of anatomy.

[94]  P. Gouras,et al.  Responses of cells in foveal visual cortex of the monkey to pure color contrast. , 1979, Journal of neurophysiology.

[95]  J. B. Levitt,et al.  Intrinsic cortical connections in macaque visual area V2: Evidence for interaction between different functional streams , 1994, The Journal of comparative neurology.

[96]  Petra Stoerig,et al.  Varieties of vision: from blind responses to conscious recognition , 1996, Trends in Neurosciences.

[97]  Maurizio Corbetta,et al.  The McCollough effect reveals orientation discrimination in a case of cortical blindness , 1995, Current Biology.

[98]  H Koizumi,et al.  Functional mapping of the human colour centre with echo-planar magnetic resonance imaging , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[99]  S. Zeki The functional organization of projections from striate to prestriate visual cortex in the rhesus monkey. , 1976, Cold Spring Harbor symposia on quantitative biology.

[100]  S. Zeki Functional specialisation in the visual cortex of the rhesus monkey , 1978, Nature.

[101]  S. Zeki,et al.  Cerebral akinetopsia (visual motion blindness). A review. , 1991, Brain : a journal of neurology.

[102]  J. Horton,et al.  Quadrantic visual field defects. A hallmark of lesions in extrastriate (V2/V3) cortex. , 1991, Brain : a journal of neurology.

[103]  S. Zeki,et al.  The position and topography of the human colour centre as revealed by functional magnetic resonance imaging. , 1997, Brain : a journal of neurology.

[104]  J. Pokorny,et al.  Color perception profiles in central achromatopsia , 1993, Neurology.

[105]  T D Albright,et al.  Form-cue invariant motion processing in primate visual cortex. , 1992, Science.

[106]  S. Zeki,et al.  The Organization of Connections between Areas V5 and V1 in Macaque Monkey Visual Cortex , 1989, The European journal of neuroscience.

[107]  S. Zeki,et al.  The secondary visual areas of the monkey. , 1969, Brain research.

[108]  W. Singer,et al.  The constructive nature of vision: direct evidence from functional magnetic resonance imaging studies of apparent motion and motion imagery , 1998, The European journal of neuroscience.

[109]  Alan Cowey,et al.  Visual perception and phenomenal consciousness , 1995, Behavioural Brain Research.

[110]  A. Alavi,et al.  Hemiachromatopsia of unilateral occipitotemporal infarcts. , 1994, American journal of ophthalmology.

[111]  D. Regan,et al.  Visual processing of motion-defined form: selective failure in patients with parietotemporal lesions , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[112]  D. G. Albrecht,et al.  Spatial mapping of monkey VI cells with pure color and luminance stimuli , 1984, Vision Research.

[113]  G. Humphreys,et al.  To See But Not To See: A Case Study Of Visual Agnosia , 1987 .

[114]  S. Zeki,et al.  Temporal hierarchy of the visual perceptive systems in the Mondrian world , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[115]  O. Bumke,et al.  Handbuch der Neurologie , 1936 .

[116]  K H Ruddock,et al.  Colour identification and colour constancy are impaired in a patient with incomplete achromatopsia associated with prestriate cortical lesions , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[117]  J. Kaas,et al.  Extrastriate Cortex in Primates , 1997, Cerebral Cortex.

[118]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[119]  Leif H. Finkel,et al.  Network simulations of retinal and cortical contributions to color constancy , 1995, Vision Research.

[120]  D. Hubel,et al.  Segregation of form, color, movement, and depth: anatomy, physiology, and perception. , 1988, Science.

[121]  A. Dale,et al.  Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging , 1995, Nature.

[122]  A. Gomori,et al.  Visual agnosia without alexia , 1984, Neurology.

[123]  P. Cz. Handbuch der physiologischen Optik , 1896 .

[124]  H. Gardner,et al.  Visual Agnosia in an Artist , 1978, Cortex.

[125]  R von der Heydt,et al.  Approaches to visual cortical function. , 1987, Reviews of physiology, biochemistry and pharmacology.

[126]  K. H. Britten,et al.  Neuronal correlates of a perceptual decision , 1989, Nature.

[127]  S Zeki,et al.  Going beyond the information given: the relation of illusory visual motion to brain activity , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[128]  C. N. Guy,et al.  Motion specific responses from a blind hemifield. , 1996, Brain : a journal of neurology.

[129]  J. Lund,et al.  The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase , 1975, The Journal of comparative neurology.

[130]  P. Cavanagh,et al.  Retinotopy and color sensitivity in human visual cortical area V8 , 1998, Nature Neuroscience.

[131]  D. Hubel,et al.  Specificity of intrinsic connections in primate primary visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[132]  P A Salin,et al.  Response selectivity of neurons in area MT of the macaque monkey during reversible inactivation of area V1. , 1992, Journal of neurophysiology.

[133]  B. Pillon,et al.  [Anatomoclinical study of a case of prosopagnosia]. , 1972, Revue neurologique (Paris).

[134]  N. Logothetis Single units and conscious vision. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[135]  J. Kaas,et al.  A representation of the visual field in the caudal third of the middle tempral gyrus of the owl monkey (Aotus trivirgatus). , 1971, Brain research.

[136]  M. Mesulam Principles of behavioral neurology , 1985 .

[137]  D Purves,et al.  Specialized vascularization of the primate visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[138]  C. N. Guy,et al.  The parallel visual motion inputs into areas V1 and V5 of human cerebral cortex. , 1995, Brain : a journal of neurology.

[139]  T. Wiesel,et al.  Functional architecture of macaque monkey visual cortex , 1977 .

[140]  K. Rockland,et al.  Divergent feedback connections from areas V4 and TEO in the macaque , 1994, Visual Neuroscience.

[141]  S. Zeki,et al.  A direct demonstration of perceptual asynchrony in vision , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[142]  S. Zeki Cortical projections from two prestriate areas in the monkey. , 1971, Brain research.

[143]  N Mai,et al.  Disturbance of movement vision after bilateral posterior brain damage. Further evidence and follow up observations. , 1991, Brain : a journal of neurology.

[144]  Semir Zeki,et al.  The Color and Motion Systems as Guides to Conscious Visual Perception , 1997 .

[145]  L Weiskrantz,et al.  The Ferrier Lecture, 1989 - Outlooks for blindsight: explicit methodologies for implicit processes , 1990, Proceedings of the Royal Society of London. B. Biological Sciences.

[146]  S. Zeki Colour coding in the cerebral cortex: The responses of wavelength-selective and colour-coded cells in monkey visual cortex to changes in wavelength composition , 1983, Neuroscience.

[147]  K. Moutoussis,et al.  Functional segregation and temporal hierarchy of the visual perceptive systems , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[148]  J. Kaas,et al.  A crescent-shaped cortical visual area surrounding the middle temporal area (MT) in the owl monkey (Aotus trivirgatus). , 1974, Brain research.

[149]  B. Cragg The topography of the afferent projections in the circumstriate visual cortex of the monkey studied by the Nauta method. , 1969, Vision research.

[150]  R. Llinás,et al.  The neuronal basis for consciousness. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[151]  Semir Zeki,et al.  THE RESPONSES OF CELLS IN THE ANTERIOR BANK OF THE SUPERIOR TEMPORAL SULCUS IN MACAQUE MONKEYS , 1980 .