Dual Quaternion based modal kinematics for multisection continuum arms

This paper presents general modal dual Quaternion (DQ) kinematics for multisection continuum arms. DQ's produce higher accuracy than homogeneous transformation matrices (HTM) when transformed to modal shape functions (MSF) of similar order and are numerically stable. Thus, the model is compact, more accurate and computationally efficient than the modal kinematics proposed by the author based on HTM's. Also, DQ kinematics does not suffer from singularity related limitations of Euler angle based inverse orientation kinematics. Recursive schemes for deriving DQ's and DQ Jacobians are also presented and can be extended arbitrarily. Both modal HTM and modal DQ kinematics are then applied to solve illustrative spatial inverse position and orientation tracking problems. Based on the results, this paper quantitatively compares both methods and highlights the advantages of modal DQ kinematics. The proposed DQ kinematics are easily extensible to variable length multisection continuum arm with general actuator configurations.

[1]  Darwin G. Caldwell,et al.  Pneumatic muscle actuated continuum arms: Modelling and experimental assessment , 2012, 2012 IEEE International Conference on Robotics and Automation.

[2]  Ian D. Walker,et al.  Three module lumped element model of a continuum arm section , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[3]  Nikos A. Aspragathos,et al.  A comparative study of three methods for robot kinematics , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[4]  Ian D. Walker,et al.  Analysis and initial experiments for a novel elephant's trunk robot , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[5]  Christopher C. Pagano,et al.  Continuum robot arms inspired by cephalopods , 2005, SPIE Defense + Commercial Sensing.

[6]  O. Sawodny,et al.  Forward kinematics of a compliant pneumatically actuated redundant manipulator , 2012, 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA).

[7]  J. Y. S. Luh,et al.  Resolved-acceleration control of mechanical manipulators , 1980 .

[8]  James Diebel,et al.  Representing Attitude : Euler Angles , Unit Quaternions , and Rotation Vectors , 2006 .

[9]  Basile Graf,et al.  Quaternions and dynamics , 2008, 0811.2889.

[10]  S. Buss Introduction to Inverse Kinematics with Jacobian Transpose , Pseudoinverse and Damped Least Squares methods , 2004 .

[11]  J. Burdick,et al.  A Modal Approach to Hyper-Redundant , 1994 .

[12]  Ian D. Walker,et al.  Kinematics for multisection continuum robots , 2006, IEEE Transactions on Robotics.

[13]  Ian D. Walker,et al.  Field trials and testing of the OctArm continuum manipulator , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[14]  Emanuele Guglielmino,et al.  Modal kinematics for multisection continuum arms , 2015, Bioinspiration & biomimetics.

[15]  Darwin G. Caldwell,et al.  Dynamic continuum arm model for use with underwater robotic manipulators inspired by octopus vulgaris , 2012, 2012 IEEE International Conference on Robotics and Automation.

[16]  Hideaki Takanobu,et al.  Multi-DOF flexible robot base on tongue , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[17]  Darwin G. Caldwell,et al.  Shape function-based kinematics and dynamics for variable length continuum robotic arms , 2011, 2011 IEEE International Conference on Robotics and Automation.

[18]  J. Bruce C. Davies,et al.  Continuum robots - a state of the art , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[19]  Huayong Zhu,et al.  On the Comparisons of Unit Dual Quaternion and Homogeneous Transformation Matrix , 2013, Advances in Applied Clifford Algebras.

[20]  Gregory S. Chirikjian,et al.  A modal approach to hyper-redundant manipulator kinematics , 1994, IEEE Trans. Robotics Autom..

[21]  Darwin G. Caldwell,et al.  Octopus inspired walking robot: Design, control and experimental validation , 2013, 2013 IEEE International Conference on Robotics and Automation.

[22]  D. G. Caldwell,et al.  Path planning for multisection continuum arms , 2012, 2012 IEEE International Conference on Mechatronics and Automation.

[23]  Ian D. Walker,et al.  Limiting-case Analysis of Continuum Trunk Kinematics , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[24]  Pinhas Ben-Tzvi,et al.  Continuum Robot Dynamics Utilizing the Principle of Virtual Power , 2014, IEEE Transactions on Robotics.

[25]  Darwin G. Caldwell,et al.  Novel modal approach for kinematics of multisection continuum arms , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.