An introduction to genetic algorithms

From the Publisher: "This is the best general book on Genetic Algorithms written to date. It covers background, history, and motivation; it selects important, informative examples of applications and discusses the use of Genetic Algorithms in scientific models; and it gives a good account of the status of the theory of Genetic Algorithms. Best of all the book presents its material in clear, straightforward, felicitous prose, accessible to anyone with a college-level scientific background. If you want a broad, solid understanding of Genetic Algorithms -- where they came from, what's being done with them, and where they are going -- this is the book. -- John H. Holland, Professor, Computer Science and Engineering, and Professor of Psychology, The University of Michigan; External Professor, the Santa Fe Institute. Genetic algorithms have been used in science and engineering as adaptive algorithms for solving practical problems and as computational models of natural evolutionary systems. This brief, accessible introduction describes some of the most interesting research in the field and also enables readers to implement and experiment with genetic algorithms on their own. It focuses in depth on a small set of important and interesting topics -- particularly in machine learning, scientific modeling, and artificial life -- and reviews a broad span of research, including the work of Mitchell and her colleagues. The descriptions of applications and modeling projects stretch beyond the strict boundaries of computer science to include dynamical systems theory, game theory, molecular biology, ecology, evolutionary biology, and population genetics, underscoring the exciting "general purpose" nature of genetic algorithms as search methods that can be employed across disciplines. An Introduction to Genetic Algorithms is accessible to students and researchers in any scientific discipline. It includes many thought and computer exercises that build on and reinforce the reader's understanding of the text. The first chapter introduces genetic algorithms and their terminology and describes two provocative applications in detail. The second and third chapters look at the use of genetic algorithms in machine learning (computer programs, data analysis and prediction, neural networks) and in scientific models (interactions among learning, evolution, and culture; sexual selection; ecosystems; evolutionary activity). Several approaches to the theory of genetic algorithms are discussed in depth in the fourth chapter. The fifth chapter takes up implementation, and the last chapter poses some currently unanswered questions and surveys prospects for the future of evolutionary computation.

[1]  J. Baldwin A New Factor in Evolution , 1896, The American Naturalist.

[2]  C L Morgan,et al.  ON MODIFICATION AND VARIATION. , 1896, Science.

[3]  R. Punnett,et al.  The Genetical Theory of Natural Selection , 1930, Nature.

[4]  S. Wright,et al.  Evolution in Mendelian Populations. , 1931, Genetics.

[5]  C. Waddington Canalization of Development and the Inheritance of Acquired Characters , 1942, Nature.

[6]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[7]  A. Hunter,et al.  The Planets: Their Origin and Development , 1952 .

[8]  As Fraser,et al.  Simulation of Genetic Systems by Automatic Digital Computers II. Effects of Linkage on Rates of Advance Under Selection , 1957 .

[9]  George E. P. Box,et al.  Evolutionary Operation: a Method for Increasing Industrial Productivity , 1957 .

[10]  Alex Fraser,et al.  Simulation of Genetic Systems by Automatic Digital Computers I. Introduction , 1957 .

[11]  Richard Bellman,et al.  Adaptive Control Processes: A Guided Tour , 1961, The Mathematical Gazette.

[12]  Nils Aall Barricelli,et al.  Numerical testing of evolution theories , 1963 .

[13]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[14]  J. Reed,et al.  Simulation of biological evolution and machine learning. I. Selection of self-reproducing numeric patterns by data processing machines, effects of hereditary control, mutation type and crossing. , 1967, Journal of theoretical biology.

[15]  J. Richards The structure and action of proteins , 1969 .

[16]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[17]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[18]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[19]  H. P. Schwefel,et al.  Numerische Optimierung von Computermodellen mittels der Evo-lutionsstrategie , 1977 .

[20]  B. Derrida Random-energy model: An exactly solvable model of disordered systems , 1981 .

[21]  W. Hamilton,et al.  The evolution of cooperation. , 1984, Science.

[22]  M. Kirkpatrick SEXUAL SELECTION AND THE EVOLUTION OF FEMALE CHOICE , 1982, Evolution; international journal of organic evolution.

[23]  E. Berlekamp,et al.  Winning Ways for Your Mathematical Plays , 1983 .

[24]  Douglas B. Lenat,et al.  Why AM and EURISKO Appear to Work , 1984, Artif. Intell..

[25]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[26]  Nichael Lynn Cramer,et al.  A Representation for the Adaptive Generation of Simple Sequential Programs , 1985, ICGA.

[27]  J. E. Baker Adaptive Selection Methods for Genetic Algorithms , 1985, ICGA.

[28]  Lashon B. Booker,et al.  Improving the Performance of Genetic Algorithms in Classifier Systems , 1985, ICGA.

[29]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[30]  John H. Holland,et al.  Escaping brittleness: the possibilities of general-purpose learning algorithms applied to parallel rule-based systems , 1995 .

[31]  Stephen Wolfram,et al.  Theory and Applications of Cellular Automata , 1986 .

[32]  John J. Grefenstette,et al.  Optimization of Control Parameters for Genetic Algorithms , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[33]  D. E. Goldberg,et al.  Simple Genetic Algorithms and the Minimal, Deceptive Problem , 1987 .

[34]  Tommaso Toffoli,et al.  Cellular automata machines - a new environment for modeling , 1987, MIT Press series in scientific computation.

[35]  John Dickinson,et al.  Using the Genetic Algorithm to Generate LISP Source Code to Solve the Prisoner's Dilemma , 1987, ICGA.

[36]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[37]  C. G. Shaefer,et al.  The ARGOT Strategy: Adaptive Representation Genetic Optimizer Technique , 1987, ICGA.

[38]  David E. Goldberg,et al.  Finite Markov Chain Analysis of Genetic Algorithms , 1987, ICGA.

[39]  John Maynard Smith,et al.  When learning guides evolution , 1987, Nature.

[40]  J. David Schaffer,et al.  An Adaptive Crossover Distribution Mechanism for Genetic Algorithms , 1987, ICGA.

[41]  Lawrence Davis,et al.  Genetic Algorithms and Simulated Annealing , 1987 .

[42]  James E. Baker,et al.  Reducing Bias and Inefficienry in the Selection Algorithm , 1987, ICGA.

[43]  Geoffrey E. Hinton,et al.  How Learning Can Guide Evolution , 1996, Complex Syst..

[44]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[45]  R. Axelrod,et al.  The Further Evolution of Cooperation , 1988, Science.

[46]  P. Smolensky On the proper treatment of connectionism , 1988, Behavioral and Brain Sciences.

[47]  J. David Schaffer,et al.  Representation and Hidden Bias: Gray vs. Binary Coding for Genetic Algorithms , 1988, ML.

[48]  Rajarshi Das,et al.  A Study of Control Parameters Affecting Online Performance of Genetic Algorithms for Function Optimization , 1989, ICGA.

[49]  David E. Goldberg,et al.  Sizing Populations for Serial and Parallel Genetic Algorithms , 1989, ICGA.

[50]  Lawrence Davis,et al.  Adapting Operator Probabilities in Genetic Algorithms , 1989, ICGA.

[51]  Gilbert Syswerda,et al.  Uniform Crossover in Genetic Algorithms , 1989, ICGA.

[52]  L. Darrell Whitley,et al.  The GENITOR Algorithm and Selection Pressure: Why Rank-Based Allocation of Reproductive Trials is Best , 1989, ICGA.

[53]  John J. Grefenstette,et al.  How Genetic Algorithms Work: A Critical Look at Implicit Parallelism , 1989, ICGA.

[54]  David E. Goldberg,et al.  Genetic Algorithms and Walsh Functions: Part I, A Gentle Introduction , 1989, Complex Syst..

[55]  Jim Antonisse,et al.  A New Interpretation of Schema Notation that Overtums the Binary Encoding Constraint , 1989, ICGA.

[56]  David E. Goldberg,et al.  Genetic Algorithms and Walsh Functions: Part II, Deception and Its Analysis , 1989, Complex Syst..

[57]  John H. Holland,et al.  Distributed genetic algorithms for function optimization , 1989 .

[58]  Kalyanmoy Deb,et al.  Messy Genetic Algorithms: Motivation, Analysis, and First Results , 1989, Complex Syst..

[59]  Fred W. Glover,et al.  Tabu Search - Part I , 1989, INFORMS J. Comput..

[60]  Peter M. Todd,et al.  Designing Neural Networks using Genetic Algorithms , 1989, ICGA.

[61]  Kalyanmoy Deb,et al.  An Investigation of Niche and Species Formation in Genetic Function Optimization , 1989, ICGA.

[62]  Hiroaki Kitano,et al.  Designing Neural Networks Using Genetic Algorithms with Graph Generation System , 1990, Complex Syst..

[63]  John J. Grefenstette,et al.  Conditions for Implicit Parallelism , 1990, FOGA.

[64]  In Schoenauer,et al.  Parallel Problem Solving from Nature , 1990, Lecture Notes in Computer Science.

[65]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[66]  Larry J. Eshelman,et al.  Spurious Correlations and Premature Convergence in Genetic Algorithms , 1990, FOGA.

[67]  Stephanie Forrest,et al.  Emergent computation: self-organizing, collective, and cooperative phenomena in natural and artificial computing networks , 1990 .

[68]  Ron Meir,et al.  The Effect of Learning on the Evolution of Asexual Populations , 1990, Complex Syst..

[69]  Norman H. Packard,et al.  A Genetic Learning Algorithm for the Analysis of Complex Data , 1990, Complex Syst..

[70]  Larry J. Eshelman,et al.  The CHC Adaptive Search Algorithm: How to Have Safe Search When Engaging in Nontraditional Genetic Recombination , 1990, FOGA.

[71]  Gilbert Syswerda,et al.  A Study of Reproduction in Generational and Steady State Genetic Algorithms , 1990, FOGA.

[72]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[73]  GUNAR E. LIEPINS,et al.  Representational issues in genetic optimization , 1990, J. Exp. Theor. Artif. Intell..

[74]  Richard K. Belew,et al.  Evolution, Learning, and Culture: Computational Metaphors for Adaptive Algorithms , 1990, Complex Syst..

[75]  Kalyanmoy Deb,et al.  Messy Genetic Algorithms Revisited: Studies in Mixed Size and Scale , 1990, Complex Syst..

[76]  I. L. Heisler,et al.  DYNAMICS OF SEXUAL SELECTION IN DIPLOID POPULATIONS , 1990, Evolution; international journal of organic evolution.

[77]  Alden H. Wright,et al.  Genetic Algorithms for Real Parameter Optimization , 1990, FOGA.

[78]  Gunar E. Liepins,et al.  Deceptiveness and Genetic Algorithm Dynamics , 1990, FOGA.

[79]  David E. Goldberg,et al.  A Note on Boltzmann Tournament Selection for Genetic Algorithms and Population-Oriented Simulated Annealing , 1990, Complex Syst..

[80]  W. Daniel Hillis,et al.  Co-evolving parasites improve simulated evolution as an optimization procedure , 1990 .

[81]  L. Darrell Whitley,et al.  Fundamental Principles of Deception in Genetic Search , 1990, FOGA.

[82]  Kalyanmoy Deb,et al.  A Comparative Analysis of Selection Schemes Used in Genetic Algorithms , 1990, FOGA.

[83]  N. Packard,et al.  Extracting cellular automaton rules directly from experimental data , 1991 .

[84]  José Carlos Príncipe,et al.  A Simulated Annealing Like Convergence Theory for the Simple Genetic Algorithm , 1991, ICGA.

[85]  Larry J. Eshelman,et al.  Preventing Premature Convergence in Genetic Algorithms by Preventing Incest , 1991, ICGA.

[86]  Thomas Bäck,et al.  Extended Selection Mechanisms in Genetic Algorithms , 1991, ICGA.

[87]  S. Otto ON EVOLUTION UNDER SEXUAL AND VIABILITY SELECTION: A TWO‐LOCUS DIPLOID MODEL , 1991, Evolution; international journal of organic evolution.

[88]  Thomas Bäck,et al.  A Survey of Evolution Strategies , 1991, ICGA.

[89]  Gunar E. Liepins,et al.  Punctuated Equilibria in Genetic Search , 1991, Complex Syst..

[90]  Zbigniew Michalewicz,et al.  An Experimental Comparison of Binary and Floating Point Representations in Genetic Algorithms , 1991, ICGA.

[91]  M. Kirkpatrick,et al.  The evolution of mating preferences and the paradox of the lek , 1991, Nature.

[92]  David H. Ackley,et al.  Interactions between learning and evolution , 1991 .

[93]  Anders Krogh,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[94]  Nicholas J. Radcliffe,et al.  Equivalence Class Analysis of Genetic Algorithms , 1991, Complex Syst..

[95]  David J. Chalmers,et al.  The Evolution of Learning: An Experiment in Genetic Connectionism , 1991 .

[96]  Michael D. Vose,et al.  Generalizing the Notion of Schema in Genetic Algorithms , 1991, Artif. Intell..

[97]  L. Darrell Whitley,et al.  The Only Challenging Problems Are Deceptive: Global Search by Solving Order-1 Hyperplanes , 1991, ICGA.

[98]  James R. Levenick Inserting Introns Improves Genetic Algorithm Success Rate: Taking a Cue from Biology , 1991, ICGA.

[99]  Mark F. Bramlette Initialization, Mutation and Selection Methods in Genetic Algorithms for Function Optimization , 1991, ICGA.

[100]  Melanie Mitchell,et al.  The royal road for genetic algorithms: Fitness landscapes and GA performance , 1991 .

[101]  John J. Grefenstette,et al.  Lamarckian Learning in Multi-Agent Environments , 1991, ICGA.

[102]  L. Darrell Whitley,et al.  COGANN-92 : International Workshop on Combinations of Genetic Algorithms and Neural Networks, June 6, 1992 Baltimore, Maryland , 1992 .

[103]  SAGAInman HarveyCSRP,et al.  Species Adaptation Genetic Algorithms: A Basis for a Continuing SAGA , 1992 .

[104]  Paula Gonzaga Sá,et al.  The Gacs-Kurdyumov-Levin automaton revisited , 1992 .

[105]  L. Darrell Whitley,et al.  An Executable Model of a Simple Genetic Algorithm , 1992, FOGA.

[106]  J. Crutchfield,et al.  The attractor—basin portrait of a cellular automaton , 1992 .

[107]  Kennetb A. De Genetic Algorithms Are NOT Function Optimizers , 1992 .

[108]  Kenneth A. De Jong,et al.  Are Genetic Algorithms Function Optimizers? , 1992, PPSN.

[109]  Alan S. Perelson,et al.  Population Diversity in an Immune System Model: Implications for Genetic Search , 1992, FOGA.

[110]  William M. Spears,et al.  Crossover or Mutation? , 1992, FOGA.

[111]  Una-May O'Reilly,et al.  An Experimental Perspective on Genetic Programming , 1992, PPSN.

[112]  Martin Zwick,et al.  Dynamics of Diversity in an Evolving Population , 1992, PPSN.

[113]  R. Riolo Survival of the Fittest Bits , 1992 .

[114]  J. D. Schaffer,et al.  Combinations of genetic algorithms and neural networks: a survey of the state of the art , 1992, [Proceedings] COGANN-92: International Workshop on Combinations of Genetic Algorithms and Neural Networks.

[115]  Kristian Lindgren,et al.  Evolutionary phenomena in simple dynamics , 1992 .

[116]  Frédéric Gruau,et al.  Genetic synthesis of Boolean neural networks with a cell rewriting developmental process , 1992, [Proceedings] COGANN-92: International Workshop on Combinations of Genetic Algorithms and Neural Networks.

[117]  R. Belew Interposing an ontogenic model between Genetic Algorithms and Neural Networks , 1992 .

[118]  Kalyanmoy Deb,et al.  Analyzing Deception in Trap Functions , 1992, FOGA.

[119]  Lashon B. Booker,et al.  Recombination Distributions for Genetic Algorithms , 1992, FOGA.

[120]  Melanie Mitchell,et al.  Relative Building-Block Fitness and the Building Block Hypothesis , 1992, FOGA.

[121]  T. P. Meyer Long-Range Predictability of High-Dimensional Chaotic Dynamics. , 1992 .

[122]  John J. Grefenstette,et al.  Deception Considered Harmful , 1992, FOGA.

[123]  Richard K. Belew,et al.  Interposing an Ontogenetic Model Between Genetic Algorithms and Neural Networks , 1992, NIPS.

[124]  James P. Crutchfield,et al.  Dynamics, computation, and the “edge of chaos”: a re-examination , 1993, adap-org/9306003.

[125]  James P. Crutchfield,et al.  Revisiting the Edge of Chaos: Evolving Cellular Automata to Perform Computations , 1993, Complex Syst..

[126]  Andrew J. Mason,et al.  Crossover Non-linearity Ratios and the Genetic Algorithm: Escaping the Blinkers of Schema Processing , 1993 .

[127]  J. Crutchfield,et al.  Turbulent pattern bases for cellular automata , 1993 .

[128]  Peter M. Todd,et al.  Parental Guidance Suggested: How Parental Imprinting Evolves Through Sexual Selection as an Adaptive Learning Mechanism , 1993, Adapt. Behav..

[129]  Inman Harvey The Puzzle of the Persistent Question Marks : A Case Study of Genetic Drift , 1993, ICGA.

[130]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[131]  John H. Holland,et al.  When will a Genetic Algorithm Outperform Hill Climbing , 1993, NIPS.

[132]  Stephanie Forrest,et al.  Genetic Algorithms for DNA Sequence Assembly , 1993, ISMB.

[133]  Steffen Schulze-Kremer,et al.  Genetic Algorithms for Protein Tertiary Structure Prediction , 1993, ECML.

[134]  Bruce Tidor,et al.  An Analysis of Selection Procedures with Particular Attention Paid to Proportional and Boltzmann Selection , 1993, International Conference on Genetic Algorithms.

[135]  H. Roitblat,et al.  Evolutionary wanderlust : Sexual selection with directional mate preferences , 1993 .

[136]  Kalyanmoy Deb,et al.  RapidAccurate Optimization of Difficult Problems Using Fast Messy Genetic Algorithms , 1993, ICGA.

[137]  Morgan B Kaufmann,et al.  Finite Markov Chain Analysis of Genetic Algorithms with Niching , 1993 .

[138]  Dirk Thierens,et al.  Mixing in Genetic Algorithms , 1993, ICGA.

[139]  Stephanie Forrest,et al.  An Introduction to SFI Echo , 1993 .

[140]  H. Kitano Neurogenetic learning: an integrated method of designing and training neural networks using genetic algorithms , 1994 .

[141]  James P. Crutchfield,et al.  A Genetic Algorithm Discovers Particle-Based Computation in Cellular Automata , 1994, PPSN.

[142]  Una-May O'Reilly,et al.  Program Search with a Hierarchical Variable Lenght Representation: Genetic Programming, Simulated Annealing and Hill Climbing , 1994, PPSN.

[143]  Lee Altenberg,et al.  The Schema Theorem and Price's Theorem , 1994, FOGA.

[144]  Walter Alden Tackett,et al.  Recombination, selection, and the genetic construction of computer programs , 1994 .

[145]  R. French,et al.  Genes, Phenes and the Baldwin Effect: Learning and Evolution in a Simulated Population , 1994 .

[146]  Geoffrey F. Miller,et al.  Exploiting Mate Choice in Evolutionary Computation: Sexual Selection as a Process of Search, Optimization, And Diversification , 1994, Evolutionary Computing, AISB Workshop.

[147]  Una-May O'Reilly,et al.  Genetic Programming II: Automatic Discovery of Reusable Programs. , 1994, Artificial Life.

[148]  Reinhard Männer,et al.  Parallel Problem Solving from Nature — PPSN III , 1994, Lecture Notes in Computer Science.

[149]  Prügel-Bennett,et al.  Analysis of genetic algorithms using statistical mechanics. , 1994, Physical review letters.

[150]  Melanie Mitchell,et al.  Evolving cellular automata to perform computations: mechanisms and impediments , 1994 .

[151]  S. Forrest,et al.  Modeling Complex Adaptive Systems with Echo , 1994 .

[152]  Una-May O'Reilly,et al.  The Troubling Aspects of a Building Block Hypothesis for Genetic Programming , 1994, FOGA.

[153]  Peter J. B. Hancock,et al.  An Empirical Comparison of Selection Methods in Evolutionary Algorithms , 1994, Evolutionary Computing, AISB Workshop.

[154]  L. Altenberg The evolution of evolvability in genetic programming , 1994 .

[155]  J. K. Kinnear,et al.  Advances in Genetic Programming , 1994 .

[156]  W. Spears,et al.  On the Virtues of Parameterized Uniform Crossover , 1995 .

[157]  Terry Jones,et al.  Crossover, Macromutationand, and Population-Based Search , 1995, ICGA.

[158]  M Mitchell,et al.  The evolution of emergent computation. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[159]  Dan Boneh,et al.  On genetic algorithms , 1995, COLT '95.

[160]  Michael D. Vose,et al.  Modeling Simple Genetic Algorithms , 1995, Evolutionary Computation.

[161]  Hans-Paul Schwefel,et al.  Evolution and optimum seeking , 1995, Sixth-generation computer technology series.

[162]  James P. Crutchfield,et al.  Evolving Globally Synchronized Cellular Automata , 1995, ICGA.

[163]  Sam Kwong,et al.  Genetic algorithms and their applications , 1996, IEEE Signal Process. Mag..

[164]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[165]  William E. Hart,et al.  Optimization with genetic algorithm hybrids that use local searches , 1996 .

[166]  Thomas Bäck,et al.  Evolutionary algorithms in theory and practice - evolution strategies, evolutionary programming, genetic algorithms , 1996 .

[167]  M. Bedau Measurement of Evolutionary Activity, Teleology, and Life , 1996 .

[168]  Aviv Bergman,et al.  Adaptive computation in ecology and evolution: a guide for future research , 1996 .

[169]  J. Pollack,et al.  The Evolutionary Induction of Subroutines , 1997 .

[170]  Thomas Bäck,et al.  Evolutionary computation: Toward a new philosophy of machine intelligence , 1997, Complex..

[171]  Georges R. Harik,et al.  Foundations of Genetic Algorithms , 1997 .

[172]  Schloss Birlinghoven,et al.  How Genetic Algorithms Really Work I.mutation and Hillclimbing , 2022 .