Modular robotic systems: Methods and algorithms for abstraction, planning, control, and synchronization

While expected applications of Modular Robotic Systems (MRS) span various workspaces, scales, and structures, practical implementations of such systems lag behind their potentials in performing real-world tasks. Challenges of enhancing MRS capabilities not only are limited to designing reliable, responsive, and robust hardware, but also include developing software and algorithms that can effectively fulfill tasks through performing fundamental functions like shape-formation, locomotion, manipulation, etc. Thus, MRS solution methods must be able to resolve problems arising from the tightly-coupled kinematics of interconnected modules and their inherent limitations in resources, communication, connection strength, etc. in performing such functions through domain-specific operations including Self-reconfiguration, Flow, Gait, Self-assembly, Self-disassembly, Self-adaptation, Grasping, Collective actuation, and Enveloping. Despite the large number of developed solution methods, there is no inclusive and updated study in the literature dedicated to classifying, analyzing, and comparing their specifications and capabilities in a systematic manner. This paper aims to fill in this gap through reviewing 64 solution methods and algorithms according to their application in each operation and by investigating their capabilities in (1) modeling and simplifying MRS problems through Abstraction methods, (2) solving MRS problems through Solution and Control methods, and (3) coordinating actions of modules through Synchronization methods. Challenging issues of each solution approach along with their advantages and weaknesses are also analyzed and open problems and improvement outlooks are mentioned. Overall, this paper aims to investigate the research areas in MRS algorithms that have been evolved so far and to explore promising research directions for the future.

[1]  Miguel Hernando,et al.  MDL: A module description language for chained heterogeneous modular robots , 2011, 2011 IEEE International Conference on Robotics and Biomimetics.

[2]  Carlos Guestrin,et al.  Multiagent Planning with Factored MDPs , 2001, NIPS.

[3]  David Brandt Comparison of A and RRT-Connect Motion Planning Techniques for Self-Reconfiguration Planning , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[4]  Zack J. Butler,et al.  Distributed Motion Planning for 3D Modular Robots with Unit-Compressible Modules , 2002, WAFR.

[5]  Bin Li,et al.  Center-configuration selection technique for the reconfigurable modular robot , 2007, Science in China Series F: Information Sciences.

[6]  F. Delcomyn Neural basis of rhythmic behavior in animals. , 1980, Science.

[7]  Zack J. Butler,et al.  Distributed and Cellular Robots , 2008, Springer Handbook of Robotics.

[8]  Serge Kernbach,et al.  On Self-Optimized Self-Assembling of Heterogeneous Multi-robot Organisms , 2011, Bio-Inspired Self-Organizing Robotic Systems.

[9]  Tad Hogg,et al.  Emergent structures in modular self-reconfigurable robots , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[10]  Kasper Støy How to Construct Dense Objects with Self-Recondfigurable Robots , 2006, EUROS.

[11]  Erik D. Demaine,et al.  Reconfiguration of Cube-Style Modular Robots Using O(logn) Parallel Moves , 2008, ISAAC.

[12]  Jie Zhao,et al.  A substructure based motion planning method for a modular self-reconfigurable robot , 2004, Proceedings of the Fourth International Workshop on Robot Motion and Control (IEEE Cat. No.04EX891).

[13]  Judea Pearl,et al.  Heuristics : intelligent search strategies for computer problem solving , 1984 .

[14]  Peyman Oreizy,et al.  An architecture-based approach to self-adaptive software , 1999, IEEE Intell. Syst..

[15]  Hod Lipson,et al.  On-line assembly planning for stochastically reconfigurable systems , 2011, Int. J. Robotics Res..

[16]  Wei-Min Shen,et al.  Hormone-based control for self-reconfigurable robots , 2000, AGENTS '00.

[17]  Gregory S. Chirikjian,et al.  A useful metric for modular robot motion planning , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[18]  Satoshi Murata,et al.  Prototypes of Self-Organizing Robots , 2012 .

[19]  Daniela Rus,et al.  Algorithms for self-reconfiguring molecule motion planning , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[20]  Wei-Min Shen,et al.  Global locomotion from local interaction in self-reconfigurable robots , 2003 .

[21]  Hod Lipson,et al.  Dynamically programmable fluidic assembly , 2008 .

[22]  Karl Sims,et al.  Evolving 3d morphology and behavior by competition , 1994 .

[23]  Jennifer Walter,et al.  Deterministic distributed algorithm for self-reconfiguration of modular robots from arbitrary to straight chain configurations , 2013, 2013 IEEE International Conference on Robotics and Automation.

[24]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[25]  Magnus Egerstedt,et al.  Complete Heterogeneous Self-Reconfiguration: Deadlock Avoidance Using Hole-Free Assemblies , 2013 .

[26]  Marco Dorigo,et al.  Cooperation through self-assembling in multi-robot systems , 2005 .

[27]  H. Kurokawa,et al.  Self-assembling machine , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[28]  Bart De Schutter,et al.  A Comprehensive Survey of Multiagent Reinforcement Learning , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[29]  E. Klavins,et al.  Programmable Self-Assembly , 2007, IEEE Control Systems.

[30]  Eiichi Yoshida,et al.  Distributed adaptive locomotion by a modular robotic system, M-TRAN II , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[31]  Lachlan Murray,et al.  Fault Tolerant Morphogenesis in Self-reconfigurable Modular Robotic Systems , 2013 .

[32]  Siddhartha S. Srinivasa,et al.  Generalizing metamodules to simplify planning in modular robotic systems , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[33]  Eric Klavins,et al.  Optimal Rules for Programmed Stochastic Self-Assembly , 2006, Robotics: Science and Systems.

[34]  Marsette Vona,et al.  A physical implementation of the self-reconfiguring crystalline robot , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[35]  Jiming Liu,et al.  Multiagent Robotic Systems , 2001 .

[36]  Akio Nozawa,et al.  Autonomous reconfiguration of robot shape by using Q-learning , 2009, Artificial Life and Robotics.

[37]  Zack J. Butler,et al.  Generic Decentralized Control for Lattice-Based Self-Reconfigurable Robots , 2004, Int. J. Robotics Res..

[38]  Dario Floreano,et al.  Co-evolution of Structures and Controllers for Neubot Underwater Modular Robots , 2005, ECAL.

[39]  Shuhei Miyashita,et al.  How morphology affects self-assembly in a stochastic modular robot , 2008, 2008 IEEE International Conference on Robotics and Automation.

[40]  Wei-Min Shen,et al.  Multimode locomotion via SuperBot robots , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[41]  Ying Zhang,et al.  Phase automata: a programming model of locomotion gaits for scalable chain-type modular robots , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[42]  Aude Billard,et al.  Graph signature for self-reconfiguration planning , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[43]  Radhika Nagpal,et al.  Self-repair through scale independent self-reconfiguration , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[44]  Manfred Nagl,et al.  A Tutorial and Bibliographical Survey on Graph Grammars , 1978, Graph-Grammars and Their Application to Computer Science and Biology.

[45]  Zhuang Fu,et al.  Self-reconfiguration Path Planning Design for M-Lattice Robot Based on Genetic Algorithm , 2011, ICIRA.

[46]  Marsette Vona,et al.  Crystalline Robots: Self-Reconfiguration with Compressible Unit Modules , 2001, Auton. Robots.

[47]  J. Deneubourg,et al.  Self-assemblages in insect societies , 2002, Insectes Sociaux.

[48]  Andrés Faiña,et al.  EDHMoR: Evolutionary designer of heterogeneous modular robots , 2013, Eng. Appl. Artif. Intell..

[49]  George M. Whitesides,et al.  Millimeter-scale self-assembly and its applications , 2003 .

[50]  Eric Klavins,et al.  Graph grammars for self assembling robotic systems , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[51]  Jeff Jones,et al.  Towards Physarum Robots , 2011, Bio-Inspired Self-Organizing Robotic Systems.

[52]  Thomas Schmickl,et al.  Artificial Hormone Reaction Networks - Towards Higher Evolvability in Evolutionary Multi-Modular Robotics , 2010, ALIFE.

[53]  Rafael Aracil,et al.  Modelling of Modular Robot Configurations Using Graph Theory , 2008, HAIS.

[54]  Thomas Schmickl,et al.  Regenerative Abilities in Modular Robots Using Virtual Embryogenesis , 2011, ICAIS.

[55]  Satoshi Murata,et al.  Self-Organization of Biological Systems , 2012 .

[56]  Auke Jan Ijspeert,et al.  Locomotion Gait Optimization For Modular Robots; Coevolving Morphology and Control , 2011, FET.

[57]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[58]  Akio Ishiguro,et al.  A Modular Robot Driven by Protoplasmic Streaming , 2008, DARS.

[59]  Carl A. Nelson,et al.  Hardware Design and Testing of ModRED: A Modular Self-Reconfigurable Robot System , 2012 .

[60]  Daniela Rus,et al.  Modular Robot Systems , 2010, IEEE Robotics & Automation Magazine.

[61]  Satoshi Murata,et al.  Artificial Self-assembly and Self-repair , 2012 .

[62]  Richard S. Sutton,et al.  Introduction to Reinforcement Learning , 1998 .

[63]  A. E. Eiben,et al.  HyperNEAT for Locomotion Control in Modular Robots , 2010, ICES.

[64]  Mark Moll,et al.  SUPERBOT: A Deployable, Multi-Functional, and Modular Self-Reconfigurable Robotic System , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[65]  Lydia E. Kavraki,et al.  Probabilistic roadmaps for path planning in high-dimensional configuration spaces , 1996, IEEE Trans. Robotics Autom..

[66]  Auke Jan Ijspeert,et al.  Automatic gait generation in modular robots: “to oscillate or to rotate; that is the question” , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[67]  Daniela Rus,et al.  Generic distributed assembly and repair algorithms for self-reconfiguring robots , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[68]  Guilin Yang,et al.  Automatic Model Generation for Modular Reconfigurable Robot Dynamics , 1998 .

[69]  Arancha Casal,et al.  Self-reconfiguration planning for a class of modular robots , 1999, Optics East.

[70]  Hod Lipson,et al.  Evolved and Designed Self-Reproducing Modular Robotics , 2007, IEEE Transactions on Robotics.

[71]  Subramanian Ramamoorthy,et al.  An efficient algorithm for self-reconfiguration planning in a modular robot , 2010, 2010 IEEE International Conference on Robotics and Automation.

[72]  Bo Dong,et al.  Multi-objective-based configuration generation and optimization for reconfigurable modular robot , 2011, International Conference on Information Science and Technology.

[73]  Eiichi Yoshida,et al.  Automatic locomotion pattern generation for modular robots , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[74]  Hadi Moradi,et al.  A New Graph Signature Calculation Method Based on Power Centrality for Modular Robots , 2010, DARS.

[75]  Thomas Schmickl,et al.  A hormone-based controller for evolutionary multi-modular robotics: From single modules to gait learning , 2010, IEEE Congress on Evolutionary Computation.

[76]  Carl A. Nelson,et al.  A Fast Coalition Structure Search Algorithm for Modular Robot Reconfiguration Planning under Uncertainty , 2012, DARS.

[77]  Eiichi Yoshida,et al.  Self-Reconfigurable Robots: Platforms for Emerging Functionality , 2003, Embodied Artificial Intelligence.

[78]  Gregory S. Chirikjian,et al.  Kinematics of a metamorphic robotic system , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[79]  Joel W. Burdick,et al.  Enumerating the Non-IsomorphicAssembly Con gurations of Modular Robotic , 2007 .

[80]  Zack J. Butler,et al.  Million Module March: Scalable Locomotion for Large Self-Reconfiguring Robots , 2008, Int. J. Robotics Res..

[81]  Mark H. Yim,et al.  Modular Reconfigurable Robots, An Approach To Urban Search and Rescue , 2002 .

[82]  Hod Lipson,et al.  Programmable 3D Stochastic Fluidic Assembly of cm-scale modules , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[83]  Vladimir Yu. Popov,et al.  Programming for modular reconfigurable robots , 2012, Programming and Computer Software.

[84]  Yan Meng,et al.  Morphogenetic Robotics - An Evolutionary Developmental Approach to Morphological and Neural Self-Organization of Robotic Systems , 2011, Bio-Inspired Self-Organizing Robotic Systems.

[85]  K. Stoy The deformatron robot: a biologically inspired homogeneous modular robot , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[86]  Satoshi Murata,et al.  Distributed Self-Reconfiguration of M-TRAN III Modular Robotic System , 2008, Int. J. Robotics Res..

[87]  L. Paez,et al.  Center of mass displacements using rolling gaits for modular robots on the outside of pipes , 2011, IX Latin American Robotics Symposium and IEEE Colombian Conference on Automatic Control, 2011 IEEE.

[88]  G. Whitesides,et al.  Self-Assembly at All Scales , 2002, Science.

[89]  Josh Bongard,et al.  Evolving modular genetic regulatory networks , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[90]  Mark Yim,et al.  Automatic Configuration Recognition Methods in Modular Robots , 2008, Int. J. Robotics Res..

[91]  James Briscoe,et al.  The interpretation of morphogen gradients , 2006, Development.

[92]  Mohammadreza Razzazi,et al.  Minimum cost open chain reconfiguration , 2011, Discret. Appl. Math..

[93]  Wei-Min Shen,et al.  On the complexity of optimal reconfiguration planning for modular reconfigurable robots , 2010, 2010 IEEE International Conference on Robotics and Automation.

[94]  Wei-Min Shen,et al.  Hormone-inspired adaptive communication and distributed control for CONRO self-reconfigurable robots , 2002, IEEE Trans. Robotics Autom..

[95]  Paulina Varshavskaya,et al.  Distributed reinforcement learning for self-reconfiguring modular robots , 2007 .

[96]  David Johan Christensen,et al.  Evolution of shape-changing and self-repairing control for the ATRON self-reconfigurable robot , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[97]  Kasper Støy,et al.  Using cellular automata and gradients to control self-reconfiguration , 2006, Robotics Auton. Syst..

[98]  Ying Zhang,et al.  Distributed Control for 3D Metamorphosis , 2001, Auton. Robots.

[99]  Isao Shimoyama,et al.  Dynamics of self-assembling systems: Analogy with chemical kinetics , 1994 .

[100]  Ying Zhang,et al.  An XML-based Scripting Language for Chain-type Modular Robotic Systems , 2003 .

[101]  Carl A. Nelson,et al.  A block partitioning algorithm for modular robot reconfiguration under uncertainty , 2013, 2013 European Conference on Mobile Robots.

[102]  Jordan B. Pollack,et al.  Automatic design and manufacture of robotic lifeforms , 2000, Nature.

[103]  Serge Kernbach,et al.  Symbiotic robot organisms: REPLICATOR and SYMBRION projects , 2008, PerMIS.

[104]  Mark H. Yim,et al.  Locomotion With A Unit-Modular Reconfigurable Robot , 1995 .

[105]  Martin Masek,et al.  Connectivity check for modular self reconfigurable robots , 2013, 2013 IEEE International Conference of IEEE Region 10 (TENCON 2013).

[106]  George M. Whitesides,et al.  Beyond molecules: Self-assembly of mesoscopic and macroscopic components , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[107]  Robert Fitch,et al.  Hierarchical Planning for Self-reconfiguring Robots Using Module Kinematics , 2010, DARS.

[108]  Radhika Nagpal,et al.  Self-Reconfiguration Using Directed Growth , 2004, DARS.

[109]  Daniela Rus,et al.  Miche: Modular Shape Formation by Self-Dissasembly , 2007, ICRA.

[110]  Wei-Min Shen,et al.  Rolling and Climbing by the Multifunctional SuperBot Reconfigurable Robotic System , 2008 .

[111]  Shengyong Chen,et al.  The Mathematical Model and Control Scheme of a Four-Legged Robot Based on GZ-I and Note Module , 2010, ICIRA.

[112]  Henrik Hautop Lund,et al.  Distributed Control in Self-reconfigurable Robots , 2003, ICES.

[113]  Ulrik Pagh Schultz Distributed control diffusion: towards a flexible programming paradigm for modular robots , 2007 .

[114]  Rolf Pfeifer,et al.  How the body shapes the way we think - a new view on intelligence , 2006 .

[115]  Auke Jan Ijspeert,et al.  Graph signature for self-reconfiguration planning of modules with symmetry , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[116]  Hartmut Schmeck,et al.  Adaptivity and self-organization in organic computing systems , 2010, TAAS.

[117]  Ying Zhang,et al.  Modular Reconfigurable Robots in Space Applications , 2003, Auton. Robots.

[118]  Anna Gorbenko,et al.  On the Optimal Reconfiguration Planning for Modular Self-Reconfigurable DNA Nanomechanical Robots , 2012 .

[119]  Padmanabhan Pillai,et al.  Collective Actuation , 2008, Int. J. Robotics Res..

[120]  Hod Lipson,et al.  Fluidic manipulation for scalable stochastic 3D assembly of modular robots , 2010, 2010 IEEE International Conference on Robotics and Automation.

[121]  Eric Klavins,et al.  Programmable parts: a demonstration of the grammatical approach to self-organization , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[122]  TrianniVito,et al.  Cooperation through self-assembly in multi-robot systems , 2006 .

[123]  Zack J. Butler,et al.  Reconfiguration Planning Among Obstacles for Heterogeneous Self-Reconfiguring Robots , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[124]  Thomas M. Roehr,et al.  Reconfigurable Integrated Multirobot Exploration System (RIMRES): Heterogeneous Modular Reconfigurable Robots for Space Exploration , 2014, J. Field Robotics.

[125]  Heinz Wörn,et al.  Automated planning as a new approach for the self-reconfiguration of mobile modular robots , 2013, 9th International Workshop on Robot Motion and Control.

[126]  Christopher Vo,et al.  Scalable and Robust Shepherding via Deformable Shapes , 2010, MIG.

[127]  W E Vesely,et al.  Fault Tree Handbook , 1987 .

[128]  Dorothea Blostein,et al.  A survey of graph grammars: theory and applications , 1992, Proceedings., 11th IAPR International Conference on Pattern Recognition. Vol.II. Conference B: Pattern Recognition Methodology and Systems.

[129]  Gregory S. Chirikjian,et al.  Useful metrics for modular robot motion planning , 1997, IEEE Trans. Robotics Autom..

[130]  Gregory S. Chirikjian,et al.  Modular Self-Reconfigurable Robot Systems [Grand Challenges of Robotics] , 2007, IEEE Robotics & Automation Magazine.

[131]  Horst Bunke,et al.  Optimal quadratic-time isomorphism of ordered graphs , 1999, Pattern Recognit..

[132]  Khaled Assaleh,et al.  Morphology for planar hexagonal modular self-reconfigurable robotic systems , 2009, 2009 6th International Symposium on Mechatronics and its Applications.

[133]  Bernhard Sendhoff,et al.  Cross-Ball: A new morphogenetic self-reconfigurable modular robot , 2011, 2011 IEEE International Conference on Robotics and Automation.

[134]  Kasper Stoy,et al.  Current Topics in Classic Self-reconfigurable Robot Research , 2011 .

[135]  Wei-Min Shen,et al.  Graph-based optimal reconfiguration planning for self-reconfigurable robots , 2014, Robotics Auton. Syst..

[136]  Auke Jan Ijspeert,et al.  Adaptive Locomotion Control in Modular Robotics , 2007 .

[137]  Guang-yi Cao,et al.  Locomotion Control of Distributed Self-reconfigurable Robot Based on Cellular Automata , 2005, ICIC.

[138]  Leslie Pack Kaelbling,et al.  Automated Design of Adaptive Controllers for Modular Robots using Reinforcement Learning , 2008, Int. J. Robotics Res..

[139]  Toshio Fukuda,et al.  Cellular robotic system (CEBOT) as one of the realization of self-organizing intelligent universal manipulator , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[140]  Marco Dorigo,et al.  Self-Assembly at the Macroscopic Scale , 2008, Proceedings of the IEEE.

[141]  Olivier Chocron,et al.  Evolving Modular Robots for Rough Terrain Exploration , 2007, Mobile Robots.

[142]  Robert Bridson,et al.  Fluid Simulation for Computer Graphics , 2008 .

[143]  Radhika Nagpal,et al.  Kilobot: A Robotic Module for Demonstrating Behaviors in a Large Scale (\(2^{10}\) Units) Collective , 2010, ICRA 2010.

[144]  Yan Meng,et al.  Morphogenetic Robotics: An Emerging New Field in Developmental Robotics , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[145]  David Johan Christensen,et al.  A distributed and morphology-independent strategy for adaptive locomotion in self-reconfigurable modular robots , 2013, Robotics Auton. Syst..

[146]  Eiichi Yoshida,et al.  Self-reconfigurable M-TRAN structures and walker generation , 2006, Robotics Auton. Syst..

[147]  Andres Upegui,et al.  YaMoR and Bluemove - An Autonomous Modular Robot with Bluetooth Interface for Exploring Adaptive Locomotion , 2005, CLAWAR.

[148]  Chih-Han Yu,et al.  Self-adapting modular robotics: A generalized distributed consensus framework , 2009, 2009 IEEE International Conference on Robotics and Automation.

[149]  Yan Meng,et al.  Autonomous Self-Reconfiguration of Modular Robots by Evolving a Hierarchical Mechanochemical Model , 2011, IEEE Computational Intelligence Magazine.

[150]  Kasper Stoy,et al.  Self-Reconfigurable Robots: An Introduction , 2010 .

[151]  Wei Xu,et al.  Towards an Efficient Self-organizing Reconfiguration Method for Self-reconfigurable Robots , 2003, J. Intell. Robotic Syst..

[152]  Zhiyun Lin,et al.  A distributed reconfiguration strategy for target enveloping with hexagonal metamorphic modules , 2011, 2011 IEEE International Conference on Robotics and Automation.

[153]  Ying Zhang,et al.  Limbless Conforming Gaits with Modular Robots , 2004, ISER.

[154]  Chengyuan Wang,et al.  Self-Repairing Algorithm of Lattice-Type Self-Reconfigurable Modular Robots , 2014, J. Intell. Robotic Syst..

[155]  I. Chen Theory and applications of modular reconfigurable robotic systems , 1994 .

[156]  Hod Lipson,et al.  Three Dimensional Stochastic Reconfiguration of Modular Robots , 2005, Robotics: Science and Systems.

[157]  Dana S. Nau,et al.  SHOP2: An HTN Planning System , 2003, J. Artif. Intell. Res..

[158]  Magnus Egerstedt,et al.  Self-Reconfiguration Using Graph Grammars for Modular Robotics , 2012, ADHS.

[159]  Hitoshi Kimura,et al.  Reconfigurable Modular Robots Adaptively Transforming a Mechanical Structure (Numerical Expression of Transformation Criteria of "CHOBIE II" and Motion Experiments) , 2008, DARS.

[160]  Ying Zhang,et al.  Closed-chain motion with large mechanical advantage , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[161]  Eiichi Yoshida,et al.  A Self-Reconfigurable Modular Robot: Reconfiguration Planning and Experiments , 2002 .

[162]  Giovanni Vigna,et al.  Understanding Code Mobility , 1998, IEEE Trans. Software Eng..

[163]  Yan Meng,et al.  Morphogenetic Self-Reconfiguration of Modular Robots , 2011, Bio-Inspired Self-Organizing Robotic Systems.

[164]  Mark Vim,et al.  Climbing with Snake-Like Robots , 2001 .

[165]  Thomas Schmickl,et al.  How to Engineer Robotic Organisms and Swarms? - Bio-Inspiration, Bio-Mimicry, and Artificial Evolution in Embodied Self-Organized Systems , 2011, Bio-Inspired Self-Organizing Robotic Systems.

[166]  David Johan Christensen,et al.  Experiments on Fault-Tolerant Self-Reconfiguration and Emergent Self-Repair , 2007, 2007 IEEE Symposium on Artificial Life.

[167]  Jindong Tan,et al.  Self-assembly control and experiments in swarm modular robots , 2012 .

[168]  Paolo Traverso,et al.  Automated Planning: Theory & Practice , 2004 .

[169]  Serge Kernbach,et al.  Reconfigurable modular robotics , 2014, Robotics Auton. Syst..

[170]  Kasper Stoy,et al.  Controlling Self-Reconfiguration using Cellular Automata and Gradients , 2004 .

[171]  Pradeep K. Khosla,et al.  A Modular Self-Reconfigurable Bipartite Robotic System: Implementation and Motion Planning , 2001, Auton. Robots.

[172]  Xianmin Zhang,et al.  Mechanical design and basic analysis of a modular robot with special climbing and manipulation functions , 2007, 2007 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[173]  Daniela Rus,et al.  Robot pebbles: One centimeter modules for programmable matter through self-disassembly , 2010, 2010 IEEE International Conference on Robotics and Automation.

[174]  Zack J. Butler,et al.  Distributed Planning and Control for Modular Robots with Unit-Compressible Modules , 2003, Int. J. Robotics Res..

[175]  Leslie Pack Kaelbling,et al.  Efficient Distributed Reinforcement Learning through Agreement , 2008, DARS.

[176]  Debraj Ray A Game-Theoretic Perspective on Coalition Formation , 2007 .

[177]  Iuliu Vasilescu,et al.  Miche: Modular Shape Formation by Self-Disassembly , 2008, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[178]  Kasper Stoy,et al.  Towards Artificial ATRON Animals: Scalable Anatomy for Self-Reconfigurable Robots , 2006 .

[179]  Houxiang Zhang,et al.  Locomotion capabilities of a modular robot with eight pitch-yaw-connecting modules , 2006 .

[180]  Chih-Han Yu,et al.  Self-organization of environmentally-adaptive shapes on a modular robot , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[181]  Gregory S. Chirikjian,et al.  Modular Robot Motion Planning Using Similarity Metrics , 2001, Auton. Robots.

[182]  Zack J. Butler,et al.  Generic decentralized control for a class of self-reconfigurable robots , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[183]  Vladimir Ufimtsev,et al.  Self-Reconfiguration in Modular Robots Using Coalition Games with Uncertainty , 2011, Automated Action Planning for Autonomous Mobile Robots.

[184]  Risto Miikkulainen,et al.  Evolving Neural Networks through Augmenting Topologies , 2002, Evolutionary Computation.

[185]  Zack J. Butler,et al.  Reconfiguration planning for heterogeneous self-reconfiguring robots , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[186]  S. LaValle Rapidly-exploring random trees : a new tool for path planning , 1998 .

[187]  Chih-Han Yu,et al.  Morpho: A self-deformable modular robot inspired by cellular structure , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[188]  Ladan Tahvildari,et al.  Self-adaptive software: Landscape and research challenges , 2009, TAAS.

[189]  Rolf Pfeifer,et al.  How the Body Shapes the Way We Think: A New View of Intelligence (Bradford Books) , 2006 .

[190]  Eiichi Yoshida,et al.  M-TRAN II: metamorphosis from a four-legged walker to a caterpillar , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[191]  Yves Duthen,et al.  Decentralized approach to evolve the structure of metamorphic robots , 2013, 2013 IEEE Symposium on Artificial Life (ALife).

[192]  Satoshi Murata,et al.  Self-reconfigurable robots , 2007, IEEE Robotics & Automation Magazine.

[193]  Yu-Xuan Wang,et al.  Particle swarm optimizer with adaptive tabu and mutation: A unified framework for efficient mutation operators , 2010, TAAS.

[194]  Eiichi Yoshida,et al.  A motion planning method for a self-reconfigurable modular robot , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[195]  Bin Li,et al.  Analysis of stairs-climbing ability for a tracked reconfigurable modular robot , 2005, IEEE International Safety, Security and Rescue Rototics, Workshop, 2005..

[196]  Jonatan Gómez,et al.  Central pattern generators and hormone inspired messages: A hybrid control strategy to implement motor primitives on chain type modular reconfigurable robots , 2011, 2011 IEEE International Conference on Robotics and Automation.

[197]  Sunil Pranit Lal,et al.  Emergent Motion Characteristics of a Modular Robot through Genetic Algorithm , 2008, ICIC.

[198]  Daniela Rus,et al.  Cellular Automata for Decentralized Control of Self-Reconfigurable Robots , 2007 .

[199]  Siddhartha S. Srinivasa,et al.  Hierarchical Motion Planning for Self-reconfigurable Modular Robots , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[200]  Frank Ortmeier,et al.  Safety and Dependability Analysis of Self-Adaptive Systems , 2006, Second International Symposium on Leveraging Applications of Formal Methods, Verification and Validation (isola 2006).

[201]  Daniela Rus,et al.  Making self-disassembling objects with multiple components in the Robot Pebbles system , 2011, 2011 IEEE International Conference on Robotics and Automation.