Fundamentals of soft robot locomotion

Soft robotics and its related technologies enable robot abilities in several robotics domains including, but not exclusively related to, manipulation, manufacturing, human–robot interaction and locomotion. Although field applications have emerged for soft manipulation and human–robot interaction, mobile soft robots appear to remain in the research stage, involving the somehow conflictual goals of having a deformable body and exerting forces on the environment to achieve locomotion. This paper aims to provide a reference guide for researchers approaching mobile soft robotics, to describe the underlying principles of soft robot locomotion with its pros and cons, and to envisage applications and further developments for mobile soft robotics.

[1]  Mingjun Zhang,et al.  Energy-Efficient Surface Propulsion Inspired by Whirligig Beetles , 2015, IEEE Transactions on Robotics.

[2]  Srinivas Vasista,et al.  Realization of Morphing Wings: A Multidisciplinary Challenge , 2012 .

[3]  Takuya Umedachi,et al.  Highly deformable 3-D printed soft robot generating inching and crawling locomotions with variable friction legs , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[4]  Helmut Hauser,et al.  Evolutionary discovery of self-stabilized dynamic gaits for a soft underwater legged robot , 2015, 2015 International Conference on Advanced Robotics (ICAR).

[5]  P. Krueger,et al.  Propulsive efficiency of a biomorphic pulsed-jet underwater vehicle , 2010, Bioinspiration & biomimetics.

[6]  S.K. Agrawal,et al.  Energetics-based design of small flapping-wing micro air vehicles , 2006, IEEE/ASME Transactions on Mechatronics.

[7]  Jun Gao,et al.  Development and design of a robotic manta ray featuring flexible pectoral fins , 2007, 2007 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[8]  Matthew D. Berkemeier,et al.  Decreasing the energy costs of swimming robots through passive elastic elements , 1997, Proceedings of International Conference on Robotics and Automation.

[9]  E J Rayfield,et al.  What makes an accurate and reliable subject-specific finite element model? A case study of an elephant femur , 2014, Journal of The Royal Society Interface.

[10]  R. Wood,et al.  Meshworm: A Peristaltic Soft Robot With Antagonistic Nickel Titanium Coil Actuators , 2013, IEEE/ASME Transactions on Mechatronics.

[11]  Jonathan E. Clark,et al.  iSprawl: Design and Tuning for High-speed Autonomous Open-loop Running , 2006, Int. J. Robotics Res..

[12]  Mariangela Manti,et al.  Contest-Driven Soft-Robotics Boost: The RoboSoft Grand Challenge , 2016, Front. Robot. AI.

[13]  Jonathan D. Bartley-Cho,et al.  Development of High-rate, Adaptive Trailing Edge Control Surface for the Smart Wing Phase 2 Wind Tunnel Model , 2004 .

[14]  Cagdas D. Onal,et al.  Design improvements and dynamic characterization on fluidic elastomer actuators for a soft robotic snake , 2014, 2014 IEEE International Conference on Technologies for Practical Robot Applications (TePRA).

[15]  G. Whitesides Soft Robotics. , 2018, Angewandte Chemie.

[16]  Duncan W. Haldane,et al.  A power modulating leg mechanism for monopedal hopping , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[17]  Robert J. Wood,et al.  A 3D-printed, functionally graded soft robot powered by combustion , 2015, Science.

[18]  Kamran Mohseni,et al.  Dynamic Modeling and Control of Biologically Inspired Vortex Ring Thrusters for Underwater Robot Locomotion , 2010, IEEE Transactions on Robotics.

[19]  Bharathram Ganapathisubramani,et al.  Aspect-Ratio Effects on Aeromechanics of Membrane Wings at Moderate Reynolds Numbers , 2015 .

[20]  C. Laschi,et al.  Biomimetic Vortex Propulsion: Toward the New Paradigm of Soft Unmanned Underwater Vehicles , 2013, IEEE/ASME Transactions on Mechatronics.

[21]  A Biologically Inspired Ray-like Underwater Robot with Electroactive Polymer Pectoral Fins , 2004 .

[22]  Robert Ringrose,et al.  Self-stabilizing running , 1997, Proceedings of International Conference on Robotics and Automation.

[23]  Metin Sitti,et al.  MultiMo-Bat: A biologically inspired integrated jumping–gliding robot , 2014, Int. J. Robotics Res..

[24]  Ron Pelrine,et al.  Multifunctional electroelastomer roll actuators and their application for biomimetic walking robots , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[25]  Robert J. Wood,et al.  An integrated design and fabrication strategy for entirely soft, autonomous robots , 2016, Nature.

[26]  Dimitris P. Tsakiris,et al.  Octopus-inspired eight-arm robotic swimming by sculling movements , 2013, 2013 IEEE International Conference on Robotics and Automation.

[27]  H. Benjamin Brown,et al.  c ○ 2001 Kluwer Academic Publishers. Manufactured in The Netherlands. RHex: A Biologically Inspired Hexapod Runner ∗ , 2022 .

[28]  Afzal Suleman,et al.  Design and testing of a biomimetic tuna using shape memory alloy induced propulsion , 2008 .

[29]  Fumiya Iida,et al.  Toward a human-like biped robot with compliant legs , 2009, Robotics Auton. Syst..

[30]  Helmut Hauser,et al.  Exploiting short-term memory in soft body dynamics as a computational resource , 2014, Journal of The Royal Society Interface.

[31]  Li Jian,et al.  CFD Simulation of Effect of Vortex Ring for Squid Jet Propulsion And Expeiments on a Bionic Jet Propulsor , 2016 .

[32]  Daniel E. Koditschek,et al.  Design Principles for a Family of Direct-Drive Legged Robots , 2016, IEEE Robotics and Automation Letters.

[33]  Kevin C. Galloway,et al.  DESIGN OF A TUNABLE STIFFNESS COMPOSITE LEG FOR DYNAMIC LOCOMOTION , 2009 .

[34]  Fumiya Iida,et al.  Morphological Computation of Multi-Gaited Robot Locomotion Based on Free Vibration , 2013, Artificial Life.

[35]  Anthony Westphal,et al.  Controlling a lamprey-based robot with an electronic nervous system , 2011 .

[36]  Koichi Suzumori,et al.  A Bending Pneumatic Rubber Actuator Realizing Soft-bodied Manta Swimming Robot , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[37]  Eijiro Takeuchi,et al.  Running performance evaluation of inchworm drive and vibration drive for active scope camera , 2011, 2011 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM).

[38]  K GuptaSatyandra,et al.  Robo Raven: A Flapping-Wing Air Vehicle with Highly Compliant and Independently Controlled Wings , 2014 .

[39]  Reinhard Blickhan,et al.  Compliant leg behaviour explains basic dynamics of walking and running , 2006, Proceedings of the Royal Society B: Biological Sciences.

[40]  Heinrich M. Jaeger,et al.  JSEL: Jamming Skin Enabled Locomotion , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[41]  R. Siegwart,et al.  Efficient and Versatile Locomotion With Highly Compliant Legs , 2013, IEEE/ASME Transactions on Mechatronics.

[42]  B Mazzolai,et al.  An octopus-bioinspired solution to movement and manipulation for soft robots , 2011, Bioinspiration & biomimetics.

[43]  Sung-Hoon Ahn,et al.  Turtle mimetic soft robot with two swimming gaits , 2016, Bioinspiration & biomimetics.

[44]  Cecilia Laschi,et al.  A Locomotion Strategy for an Octopus-Bioinspired Robot , 2012, Living Machines.

[45]  Sung-Hoon Ahn,et al.  A turtle-like swimming robot using a smart soft composite (SSC) structure , 2012 .

[46]  John W. Gerdes,et al.  INCORPORATION OF PASSIVE WING FOLDING IN FLAPPING WING MINIATURE AIR VEHICLES , 2009 .

[47]  Dario Floreano,et al.  Steerable miniature jumping robot , 2010, Auton. Robots.

[48]  Darwin G. Caldwell,et al.  Octopus inspired walking robot: Design, control and experimental validation , 2013, 2013 IEEE International Conference on Robotics and Automation.

[49]  Chandana Paul,et al.  Design and control of tensegrity robots for locomotion , 2006, IEEE Transactions on Robotics.

[50]  Shuxiang Guo,et al.  A new type of fish-like underwater microrobot , 2003 .

[51]  Chris Rogers,et al.  Caterpillar locomotion: A new model for soft- bodied climbing and burrowing robots , 2006 .

[52]  Pooja Balasubramanian,et al.  A Perspective for Soft Robotics : Bio-Inspired Evolution in Robotics , 2016 .

[53]  D. Leo,et al.  Biomimetic jellyfish-inspired underwater vehicle actuated by ionic polymer metal composite actuators , 2012 .

[54]  R. Woledge,et al.  The theoretical limits to the power output of a muscle–tendon complex with inertial and gravitational loads , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[55]  S. Sane,et al.  Aerodynamic effects of flexibility in flapping wings , 2010, Journal of The Royal Society Interface.

[56]  Jian Zhu,et al.  A Soft Jellyfish Robot Driven by a Dielectric Elastomer Actuator , 2016, IEEE Robotics and Automation Letters.

[57]  J.J.M. Driessen Machine and behaviour co-design of a powerful minimally actuated hopping robot , 2015 .

[58]  R. Full,et al.  Cockroaches traverse crevices, crawl rapidly in confined spaces, and inspire a soft, legged robot , 2016, Proceedings of the National Academy of Sciences.

[59]  Kevin Y. Ma,et al.  Controlled Flight of a Biologically Inspired, Insect-Scale Robot , 2013, Science.

[60]  Joseph Ayers,et al.  Biomimetic approaches to the control of underwater walking machines , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[61]  Erico Guizzo,et al.  The hard lessons of DARPA's robotics challenge [News] , 2015 .

[62]  Frank E. Schneider,et al.  ELROB and EURATHLON: Improving search & rescue robotics through real-world robot competitions , 2015, 2015 10th International Workshop on Robot Motion and Control (RoMoCo).

[63]  Michael Günther,et al.  Intelligence by mechanics , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[64]  Alexander Spröwitz,et al.  ATRIAS-a human size compliant bipedal robot walks efficiently , 2013 .

[65]  Ioannis M. Rekleitis,et al.  The Avatar Project , 2008, IEEE Robotics & Automation Magazine.

[66]  Kamran Mohseni,et al.  Design considerations for an underwater soft-robot inspired from marine invertebrates , 2015, Bioinspiration & biomimetics.

[67]  M S Triantafyllou,et al.  A fast-starting mechanical fish that accelerates at 40 m s−2 , 2010, Bioinspiration & biomimetics.

[68]  T Umedachi,et al.  Softworms: the design and control of non-pneumatic, 3D-printed, deformable robots , 2016, Bioinspiration & biomimetics.

[69]  Paolo Dario,et al.  Design, Fabrication and Performances of a Biomimetic Robotic Earthworm , 2004, 2004 IEEE International Conference on Robotics and Biomimetics.

[70]  Robert J. Wood,et al.  Peristaltic locomotion with antagonistic actuators in soft robotics , 2010, 2010 IEEE International Conference on Robotics and Automation.

[71]  M. S. Triantafyllou,et al.  Ultra-fast escape of a deformable jet-propelled body , 2013, Journal of Fluid Mechanics.

[72]  Carter S. Haines,et al.  Hydrogen-fuel-powered bell segments of biomimetic jellyfish , 2012 .

[73]  Shaker A. Meguid,et al.  Shape morphing of aircraft wing: Status and challenges , 2010 .

[74]  Joseph Lamprey Robots , 2000 .

[75]  KovačMirko,et al.  The Bioinspiration Design Paradigm: A Perspective for Soft Robotics , 2014 .

[76]  Hiroaki Kitano,et al.  RoboCup: Robot World Cup , 1998, CROS.

[77]  Jie Yang,et al.  A new soft bionic starfish robot with multi-gaits , 2013, 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[78]  A Jusufi,et al.  Righting and turning in mid-air using appendage inertia: reptile tails, analytical models and bio-inspired robots , 2010, Bioinspiration & biomimetics.

[79]  Matteo Cianchetti,et al.  Soft robotics: Technologies and systems pushing the boundaries of robot abilities , 2016, Science Robotics.

[80]  Darwin G. Caldwell,et al.  Locomotion with continuum limbs , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[81]  G. D. Weymouth,et al.  Drag cancellation by added-mass pumping , 2016, Journal of Fluid Mechanics.

[82]  Cecilia Laschi,et al.  Hopping on Uneven Terrains With an Underwater One-Legged Robot , 2016, IEEE Robotics and Automation Letters.

[83]  Zheng Chen,et al.  Bio-inspired robotic manta ray powered by ionic polymer–metal composite artificial muscles , 2012 .

[84]  Jonathan Rossiter,et al.  Kinematic Analysis of VibroBot: A Soft, Hopping Robot with Stiffness- and Shape-Changing Abilities , 2016, Front. Robot. AI.

[85]  S. Hirai,et al.  Crawling and Jumping Soft Robot KOHARO , 2005 .

[86]  Hoon Cheol Park,et al.  Effect of an artificial caudal fin on the performance of a biomimetic fish robot propelled by piezoelectric actuators , 2007 .

[87]  R. McNeill Alexander,et al.  Principles of Animal Locomotion , 2002 .

[88]  Hillel J Chiel,et al.  Efficient worm-like locomotion: slip and control of soft-bodied peristaltic robots , 2013, Bioinspiration & biomimetics.

[89]  Shuxiang Guo,et al.  Design and realization of a remote control centimeter-scale robotic fish , 2008, 2008 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[90]  Ja Choon Koo,et al.  Artificial annelid robot driven by soft actuators , 2007, Bioinspiration & biomimetics.

[91]  Justin E. Seipel,et al.  Energy Efficiency of Legged Robot Locomotion With Elastically Suspended Loads , 2013, IEEE Transactions on Robotics.

[92]  Markus P. Nemitz,et al.  Using Voice Coils to Actuate Modular Soft Robots: Wormbot, an Example , 2016, Soft robotics.

[93]  F Renda,et al.  Modelling cephalopod-inspired pulsed-jet locomotion for underwater soft robots , 2015, Bioinspiration & biomimetics.

[94]  Shashank Priya,et al.  A biomimetic robotic jellyfish (Robojelly) actuated by shape memory alloy composite actuators , 2011, Bioinspiration & biomimetics.

[95]  Soon-Jo Chung,et al.  A biomimetic robotic platform to study flight specializations of bats , 2017, Science Robotics.

[96]  M. Goldfarb,et al.  The Development of Elastodynamic Components for Piezoelectrically Actuated Flapping Micro-Air Vehicles , 2002 .

[97]  Ronald S. Fearing,et al.  Robotic vertical jumping agility via series-elastic power modulation , 2016, Science Robotics.

[98]  Elizabeth V. Mangan,et al.  Development of a peristaltic endoscope , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[99]  Shinichi Hirai,et al.  Crawling and jumping of deformable soft robot , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[100]  R. Blickhan,et al.  Similarity in multilegged locomotion: Bouncing like a monopode , 1993, Journal of Comparative Physiology A.

[101]  Marc H. Raibert,et al.  Running on four legs as though they were one , 1986, IEEE J. Robotics Autom..

[102]  Emanuel Azizi,et al.  Flexible mechanisms: the diverse roles of biological springs in vertebrate movement , 2011, Journal of Experimental Biology.

[103]  Hao Liu,et al.  Flexible flapping wings with self-organized microwrinkles , 2015, Bioinspiration & biomimetics.

[104]  Jonathan E. Clark,et al.  Characterization of running with compliant curved legs. , 2015, Bioinspiration & biomimetics.

[105]  R. Blickhan The spring-mass model for running and hopping. , 1989, Journal of biomechanics.

[106]  M Calisti,et al.  Bioinspired locomotion and grasping in water: the soft eight-arm OCTOPUS robot , 2015, Bioinspiration & biomimetics.

[107]  Filip Ilievski,et al.  Multigait soft robot , 2011, Proceedings of the National Academy of Sciences.

[108]  Daniela Rus,et al.  Autonomous Soft Robotic Fish Capable of Escape Maneuvers Using Fluidic Elastomer Actuators. , 2014, Soft robotics.

[109]  Kyu-Jin Cho,et al.  An integrated jumping-crawling robot using height-adjustable jumping module , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[110]  Wei Shyy,et al.  Scaling law and enhancement of lift generation of an insect-size hovering flexible wing , 2013, Journal of The Royal Society Interface.

[111]  Darryll J. Pines,et al.  Wind Tunnel Testing of a Morphing Aspect Ratio Wing Using an Pneumatic Telescoping Spar , 2003 .

[112]  Jennifer H. Shin,et al.  Shape memory alloy-based small crawling robots inspired by C. elegans , 2011, Bioinspiration & biomimetics.

[113]  Kyu-Jin Cho,et al.  Deformable-wheel robot based on soft material , 2013 .

[114]  Helmut Hauser,et al.  Novelty-Based Evolutionary Design of Morphing Underwater Robots , 2015, GECCO.

[115]  R. J. Wood,et al.  An Origami-Inspired Approach to Worm Robots , 2013, IEEE/ASME Transactions on Mechatronics.

[116]  Daniela Rus,et al.  Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot , 2013, Bioinspiration & biomimetics.

[117]  Cecilia Laschi,et al.  Underwater soft-bodied pulsed-jet thrusters: Actuator modeling and performance profiling , 2016, Int. J. Robotics Res..

[118]  Robert J. Wood,et al.  A Resilient, Untethered Soft Robot , 2014 .

[119]  Jian Li,et al.  A micro biomimetic manta ray robot fish actuated by SMA , 2009, 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[120]  Fumiya Iida,et al.  An Energy-Efficient Hopping Robot Based on Free Vibration of a Curved Beam , 2014, IEEE/ASME Transactions on Mechatronics.

[121]  M. Kovač,et al.  Wind and water tunnel testing of a morphing aquatic micro air vehicle , 2017, Interface Focus.

[122]  Benjamin Schrauwen,et al.  Design and control of compliant tensegrity robots through simulation and hardware validation , 2014, Journal of The Royal Society Interface.

[123]  Huai-Ti Lin,et al.  Towards a biomorphic soft robot: Design constraints and solutions , 2012, 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob).

[124]  Jie Yang,et al.  Initial Prototype Design and Investigation of an Undulating Body by SMA , 2006, 2006 IEEE International Conference on Automation Science and Engineering.

[125]  Shigeo Hirose,et al.  The standard circular gait of a quadruped walking vehicle , 1986, Adv. Robotics.

[126]  Juergen Rummel,et al.  Stable and robust walking with compliant legs , 2010, 2010 IEEE International Conference on Robotics and Automation.

[127]  Colin Stewart,et al.  A jellyfish-inspired jet propulsion robot actuated by an iris mechanism , 2013 .

[128]  Auke Jan Ijspeert,et al.  Towards dynamic trot gait locomotion: Design, control, and experiments with Cheetah-cub, a compliant quadruped robot , 2013, Int. J. Robotics Res..

[129]  Jessica K. Hodgins,et al.  Adjusting step length for rough terrain locomotion , 1991, IEEE Trans. Robotics Autom..

[130]  Joonbum Bae,et al.  Design of a robot with biologically-inspired swimming hairs for fast and efficient mobility in aquatic environment , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[131]  Jonathan D. Bartley-Cho,et al.  Improved design and performance of the SMA torque tube for the DARPA Smart Wing program , 1999, Smart Structures.

[132]  Cecilia Laschi,et al.  PoseiDRONE: Design of a soft-bodied ROV with crawling, swimming and manipulation ability , 2013, 2013 OCEANS - San Diego.

[133]  M Di Luca,et al.  Bioinspired morphing wings for extended flight envelope and roll control of small drones , 2017, Interface Focus.

[134]  KHLow,et al.  Perspectives on biologically inspired hybrid and multi-modal locomotion , 2015 .

[135]  Fumiya Iida,et al.  Bipedal walking and running with spring-like biarticular muscles. , 2008, Journal of biomechanics.

[136]  Amir Ayali,et al.  Locust-inspired miniature jumping robot , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[137]  Roger D. Quinn,et al.  Worms, waves and robots , 2012, 2012 IEEE International Conference on Robotics and Automation.

[138]  Garth Zeglin,et al.  The bow leg hopping robot , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[139]  Jason Rife,et al.  Template for robust soft-body crawling with reflex-triggered gripping , 2015, Bioinspiration & biomimetics.

[140]  Kai Xiao,et al.  A micro-robot fish with embedded SMA wire actuated flexible biomimetic fin , 2008 .

[141]  Jonathan E. Clark,et al.  Running over unknown rough terrain with a one-legged planar robot , 2011, Bioinspiration & biomimetics.

[142]  D. Rus,et al.  Design, fabrication and control of soft robots , 2015, Nature.

[143]  Stefano Stramigioli,et al.  Human-like Walking with Compliant Legs , 2011 .

[144]  W. Kier,et al.  Tongues, tentacles and trunks: the biomechanics of movement in muscular‐hydrostats , 1985 .

[145]  Ramiro Godoy-Diana,et al.  Passive elastic mechanism to mimic fish-muscle action in anguilliform swimming , 2013, Journal of The Royal Society Interface.

[146]  Cecilia Laschi,et al.  Dynamics of underwater legged locomotion: modeling and experiments on an octopus-inspired robot , 2015, Bioinspiration & biomimetics.