Towards Deliberative Control in Marine Robotics

We describe a general purpose artificial-intelligence-based control architecture that incorporates in situ decision making for autonomous underwater vehicles (AUVs). The Teleo-reactive executive (T-REX) framework deliberates about future states, plans for actions, and executes generated activities while monitoring plans for anomalous conditions. Plans are no longer scripted a priori but synthesized onboard with high-level directives instead of low-level commands. Further, the architecture uses multiple control loops for a “divide-and-conquer” problem-solving strategy allowing for incremental computational model building, robust and focused failure recovery, ease of software development, and ability to use legacy or nonnative computational paradigms. Vehicle adaptation and sampling occurs in situ with additional modules which can be selectively used depending on the application in focus. Abstraction in problem solving allows different applications to be programmed relatively easily, with little to no changes to the core search engine, thereby making software engineering sustainable. The representational ability to deal with time and resources coupled with Machine Learning techniques for event detection allows balancing shorter term benefits with longer term needs, an important need as AUV hardware becomes more robust allowing persistent ocean sampling and observation. T-REX is in regular operational use at MBARI, providing scientists a new tool to sample and observe the dynamic coastal ocean.

[1]  Thierry Vidal,et al.  Contingent durations in temporal CSPs: from consistency to controllabilities , 1997, Proceedings of TIME '97: 4th International Workshop on Temporal Representation and Reasoning.

[2]  B Boehm A spiral model of software development and enhancement , 1986, SOEN.

[3]  Paolo Traverso,et al.  Automated planning - theory and practice , 2004 .

[4]  Gediminas Adomavicius,et al.  Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions , 2005, IEEE Transactions on Knowledge and Data Engineering.

[5]  Sandeep Kumar,et al.  Optimizing Hidden Markov Models for Ocean Feature Detection , 2011, FLAIRS.

[6]  Daniel S. Weld,et al.  The LPSAT System and its Application to Resource Planning , 1999, International Joint Conference on Artificial Intelligence.

[7]  Karen L. Myers CPEF: A Continuous Planning and Execution Framework , 1999, AI Mag..

[8]  Rina Dechter,et al.  Temporal Constraint Networks , 1989, Artif. Intell..

[9]  Karen Zita Haigh,et al.  Interleaving Planning and Robot Execution for Asynchronous User Requests , 1998, Auton. Robots.

[10]  Simon Lacroix,et al.  ROAR: Resource oriented agent architecture for the autonomy of robots , 2011, ICRA.

[11]  E. McPhee‐Shaw,et al.  Boundary–interior exchange: Reviewing the idea that internal-wave mixing enhances lateral dispersal near continental margins , 2006 .

[12]  Amedeo Cesta,et al.  Gaining efficiency and flexibility in the simple temporal problem , 1996, Proceedings Third International Workshop on Temporal Representation and Reasoning (TIME '96).

[13]  Gaurav S. Sukhatme,et al.  Coordinated Sampling of Dynamic Oceanographic Features with AUVs and Drifters , 2012 .

[14]  M. Brzezinski,et al.  Empirical models of toxigenic Pseudo-nitzschia blooms: Potential use as a remote detection tool in the Santa Barbara Channel , 2009 .

[15]  Michel Leconte,et al.  Beyond the Glass Box: Constraints as Objects , 1995, ILPS.

[16]  Robert Pinkel,et al.  The Wirewalker: A Vertically Profiling Instrument Carrier Powered by Ocean Waves , 2011 .

[17]  K. Rajan,et al.  An Online Utility-Based Approach for Sampling Dynamic Ocean Fields , 2012, IEEE Journal of Oceanic Engineering.

[18]  Tara A. Estlin,et al.  Balancing deliberation and reaction, planning and execution for space robotic applications , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[19]  Sam Steel,et al.  Integrating Planning, Execution and Monitoring , 1988, AAAI.

[20]  Michael R. Benjamin,et al.  The Interval Programming Model for Multi-objective Decision Making , 2004 .

[21]  C. Haldeman,et al.  The Trans-Atlantic Slocum Glider Expeditions: A Catalyst for Undergraduate Participation in Ocean Science and Technology , 2011 .

[22]  Daniel L. Rudnick,et al.  Observing the Ocean with Autonomous and Lagrangian Platforms and Sensors (ALPS): the Role of ALPS in Sustained Ocean Observing Systems , 2003 .

[23]  Nicola Muscettola,et al.  Model-Unified Planning and Execution for Distributed Autonomous System Control , 2006, AAAI Fall Symposium: Spacecraft Autonomy.

[24]  Frederic Py,et al.  A systematic agent framework for situated autonomous systems , 2010, AAMAS.

[25]  Richard Dearden,et al.  Automated Fault Diagnosis for an Autonomous Underwater Vehicle , 2013, IEEE Journal of Oceanic Engineering.

[26]  Jeremy Frank,et al.  Constraint-Based Attribute and Interval Planning , 2003, Constraints.

[27]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[28]  Porter Hoagland,et al.  The Economic Effects of Harmful Algal Blooms , 2006 .

[29]  Nicola Muscettola,et al.  Execution of Temporal Plans with Uncertainty , 2000, AAAI/IAAI.

[30]  Roman Barták,et al.  Constraint Programming: In Pursuit of the Holy Grail , 1999 .

[31]  Rachid Alami,et al.  Dealing with time in planning and execution monitoring , 1988 .

[32]  Frederic Py,et al.  A deliberative architecture for AUV control , 2008, 2008 IEEE International Conference on Robotics and Automation.

[33]  Alan K. Mackworth Consistency in Networks of Relations , 1977, Artif. Intell..

[34]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[35]  P. Pandurang Nayak,et al.  Remote Agent: To Boldly Go Where No AI System Has Gone Before , 1998, Artif. Intell..

[36]  Nicola Muscettola,et al.  Planning in Interplanetary Space: Theory and Practice , 2000, AIPS.

[37]  Nicola Muscettola Incremental Maximum Flows for Fast Envelope Computation , 2004, ICAPS.

[38]  Nils J. Nilsson,et al.  Shakey the Robot , 1984 .

[39]  J. Bresina,et al.  MAPGEN : mixed initiative planning and scheduling for the Mars '03 MER mission , 2003 .

[40]  Stefan B. Williams,et al.  Toward adaptive benthic habitat mapping using gaussian process classification , 2010, J. Field Robotics.

[41]  Amedeo Cesta,et al.  Developing an End-to-End Planning Application from a Timeline Representation Framework , 2009, IAAI.

[42]  Frederic Py,et al.  Adaptive Control for Autonomous Underwater Vehicles , 2008, AAAI.

[43]  Gaurav S. Sukhatme,et al.  Coordinated sampling of dynamic oceanographic features with underwater vehicles and drifters , 2012, Int. J. Robotics Res..

[44]  Gabriel Hugh Elkaim,et al.  An experimental momentum-based front detection method for autonomous underwater vehicles , 2012, 2012 IEEE International Conference on Robotics and Automation.

[45]  P. Guttorp,et al.  Geostatistical Space-Time Models, Stationarity, Separability, and Full Symmetry , 2007 .

[46]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[47]  Solange Lemai-Chenevier,et al.  Ixtet-exec : planning, plan repair and execution control with time and resource management , 2004 .

[48]  Nicola Muscettola,et al.  Automating Mission Scheduling for Space-Based Observatories , 1998 .

[49]  Drew McDermott,et al.  Temporal Data Base Management , 1987, Artif. Intell..

[50]  Frederick Armstrong,et al.  Antarctic Krill Under Sea Ice: Elevated Abundance in a Narrow Band Just South of Ice Edge , 2002, Science.

[51]  Nicola Muscettola,et al.  A Real-Time Rover Executive Based On Model-Based Reactive Planning , 2003 .

[52]  Guoqiang Peter Zhang,et al.  Neural networks for classification: a survey , 2000, IEEE Trans. Syst. Man Cybern. Part C.

[53]  Robert Pinkel,et al.  Wirewalker: An Autonomous Wave-Powered Vertical Profiler , 2001 .

[54]  Erann Gat,et al.  Robust Periodic Planning and Execution for Autonomous Spacecraft , 1997, IJCAI.

[55]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[56]  R. A. Brooks,et al.  Intelligence without Representation , 1991, Artif. Intell..

[57]  Dana S. Nau,et al.  On the Use of Integer Programming Models in AI Planning , 1999, IJCAI.

[58]  Martha E. Pollack,et al.  Passive and active decision postponement in plan generation , 1996 .

[59]  Javier Barreiro,et al.  Peer-to-peer planning for space mission control , 2009, 2009 IEEE Aerospace conference.

[60]  David J. Musliner,et al.  World Modeling for the Dynamic Construction of Real-Time Control Plans , 1995, Artif. Intell..

[61]  David S. Wettergreen,et al.  SECOND EXPERIMENTS IN THE ROBOTIC INVESTIGATION OF LIFE IN THE ATACAMA DESERT OF CHILE , 2005 .

[62]  Michael L. Incze Optimized deployment of autonomous underwater vehicles for characterization of coastal waters , 2009 .

[63]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[64]  F. Py,et al.  In Situ Analysis for Intelligent Control , 2007, OCEANS 2007 - Europe.

[65]  Stephen F. Smith,et al.  Coordinating space telescope operations in an integrated planning and scheduling architecture , 1992 .

[66]  C. Cordell Green,et al.  Application of Theorem Proving to Problem Solving , 1969, IJCAI.

[67]  P. Pandurang Nayak,et al.  Remote Agent: An Autonomous Control System for the New Millennium , 2000, ECAI.

[68]  Rolf H. Möhring,et al.  Resource-constrained project scheduling: Notation, classification, models, and methods , 1999, Eur. J. Oper. Res..

[69]  Frederic Py,et al.  T-REX: partitioned inference for AUV mission control , 2012 .

[70]  Mark S. Boddy,et al.  Reasoning About Partially Ordered Events , 1988, Artificial Intelligence.

[71]  D. J. White,et al.  A Survey of Applications of Markov Decision Processes , 1993 .

[72]  Toby Walsh,et al.  Handbook of Constraint Programming , 2006, Handbook of Constraint Programming.

[73]  J. Ryan,et al.  Physical-biological coupling in Monterey Bay, California: topographic influences on phytoplankton ecology , 2005 .

[74]  Paul Newman,et al.  Multi-objective optimization of sensor quality with efficient marine vehicle task execution , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[75]  Rob Sherwood,et al.  Using Iterative Repair to Improve the Responsiveness of Planning and Scheduling , 2000, AIPS.

[76]  Mark S. Boddy Temporal reasoning for planning and scheduling , 1993, SGAR.

[77]  Tara A. Estlin,et al.  CLARAty and challenges of developing interoperable robotic software , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[78]  Simon Lacroix,et al.  Decisional autonomy of planetary rovers , 2007, J. Field Robotics.

[79]  Krzysztof R. Apt,et al.  Principles of constraint programming , 2003 .

[80]  Finn V. Jensen,et al.  Bayesian Networks and Decision Graphs , 2001, Statistics for Engineering and Information Science.

[81]  Shlomo Zilberstein,et al.  Using Anytime Algorithms in Intelligent Systems , 1996, AI Mag..

[82]  Erann Gat,et al.  A Hybrid Procedural/Deductive Executive for Autonomous Spacecraft , 1998, Agents.

[83]  Nicola Muscettola,et al.  Design of the Remote Agent experiment for spacecraft autonomy , 1998, 1998 IEEE Aerospace Conference Proceedings (Cat. No.98TH8339).

[84]  Ari K. Jónsson,et al.  MAPGEN: Mixed-Initiative Planning and Scheduling for the Mars Exploration Rover Mission , 2004, IEEE Intell. Syst..

[85]  Jason Feldman,et al.  Remote Detection of Marine Microbes, Small Invertebrates, Harmful Algae, and Biotoxins using the Environmental Sample Processor (ESP) , 2009 .

[86]  Kurt Konolige,et al.  Autonomous door opening and plugging in with a personal robot , 2010, 2010 IEEE International Conference on Robotics and Automation.

[87]  Rachid Alami,et al.  An Architecture for Autonomy , 1998, Int. J. Robotics Res..

[88]  Peter van Beek,et al.  CPlan: A Constraint Programming Approach to Planning , 1999, AAAI/IAAI.

[89]  Irvin J. Lustig,et al.  Constraint Programming and Its Relationship to Mathematical Programming , 2001 .

[90]  Nicola Muscettola,et al.  Model-based executive control through reactive planning for autonomous rovers , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[91]  James G. Bellingham,et al.  A peak-capture algorithm used on an autonomous underwater vehicle in the 2010 Gulf of Mexico oil spill response scientific survey , 2011, J. Field Robotics.

[92]  P. Pandurang Nayak,et al.  A Reactive Planner for a Model-based Executive , 1997, IJCAI.

[93]  James F. Allen Towards a General Theory of Action and Time , 1984, Artif. Intell..

[94]  Rob Sherwood,et al.  Using Autonomy Flight Software to Improve Science Return on Earth Observing One , 2005, J. Aerosp. Comput. Inf. Commun..

[95]  Reid G. Simmons,et al.  Structured control for autonomous robots , 1994, IEEE Trans. Robotics Autom..

[96]  Brian Bingham,et al.  Techniques for Deep Sea Near Bottom Survey Using an Autonomous Underwater Vehicle , 2007, Int. J. Robotics Res..

[97]  Jnaneshwar Das,et al.  Exploring Space-Time Tradeoffs in Autonomous Sampling for Marine Robotics , 2012, ISER.

[98]  A. Berthoz,et al.  The Brain’s Sense of Movement , 2000 .

[99]  L.E. Bird,et al.  Development of an Active, Large Volume, Discrete Seawater Sampler for Autonomous Underwater Vehicles , 2007, OCEANS 2007.

[100]  Ari K. Jónsson,et al.  Activity Planning for the Mars Exploration Rovers , 2005, ICAPS.

[101]  David E. Smith,et al.  Bridging the gap between planning and scheduling , 2000, The Knowledge Engineering Review.

[102]  Eugene C. Freuder,et al.  The Complexity of Some Polynomial Network Consistency Algorithms for Constraint Satisfaction Problems , 1985, Artif. Intell..

[103]  Paolo Traverso,et al.  Automated Planning: Theory & Practice , 2004 .

[104]  Nicola Muscettola,et al.  Reformulating Temporal Plans for Efficient Execution , 1998, KR.

[105]  Lonny Lundsten,et al.  Spotlight 6: Davidson seamount , 2010 .

[106]  R. Thomas,et al.  Mapping AUV Survey of Axial Seamount , 2006 .

[107]  Nicola Muscettola,et al.  Computing the Envelope for Stepwise-Constant Resource Allocations , 2002, CP.

[108]  David W. Aha,et al.  Instance-Based Learning Algorithms , 1991, Machine Learning.

[109]  Paolo Traverso,et al.  Time for Planning , 2004 .

[110]  Malik Ghallab,et al.  Planning with Sharable Resource Constraints , 1995, IJCAI.

[111]  P. Pandurang Nayak,et al.  A Model-Based Approach to Reactive Self-Configuring Systems , 1996, AAAI/IAAI, Vol. 2.

[112]  Paul Morris,et al.  State-Based Scheduling via Active Resource Solving , 2011, 2011 IEEE Fourth International Conference on Space Mission Challenges for Information Technology.

[113]  Rodney A. Brooks,et al.  Intelligence Without Reason , 1991, IJCAI.

[114]  Brian C. Williams,et al.  Model-based programming of intelligent embedded systems and robotic space explorers , 2003, Proc. IEEE.

[115]  Michael R. Genesereth,et al.  Logical foundations of artificial intelligence , 1987 .

[116]  Nicola Muscettola,et al.  IDEA: Planning at the Core of Autonomous Reactive Agents , 2002 .

[117]  L. Rabiner,et al.  An introduction to hidden Markov models , 1986, IEEE ASSP Magazine.

[118]  P. Pandurang Nayak,et al.  Immobile Robots AI in the New Millennium , 1996, AI Mag..

[119]  M. Pebody,et al.  Automatic fault detection and execution monitoring for AUV missions , 2010, 2010 IEEE/OES Autonomous Underwater Vehicles.

[120]  William E. Lorensen,et al.  Object-Oriented Modeling and Design , 1991, TOOLS.

[121]  Austin Tate,et al.  O-Plan: The open Planning Architecture , 1991, Artif. Intell..

[122]  Rob Sherwood,et al.  Integrated planning and execution for autonomous spacecraft , 1999, 1999 IEEE Aerospace Conference. Proceedings (Cat. No.99TH8403).

[123]  Steven A. Vere,et al.  Planning in Time: Windows and Durations for Activities and Goals , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[124]  James G Bellingham,et al.  Design and Tests of an Adaptive Triggering Method for Capturing Peak Samples in a Thin Phytoplankton Layer by an Autonomous Underwater Vehicle , 2010, IEEE Journal of Oceanic Engineering.

[125]  E. Feigenbaum,et al.  Computers and Thought , 1963 .

[126]  K. Rajan,et al.  Mobile autonomous process sampling within coastal ocean observing systems , 2010 .

[127]  Pedro Patron,et al.  Interoperability of agent capabilities for autonomous knowledge acquisition and decision making in unmanned platforms , 2009, OCEANS 2009-EUROPE.

[128]  Ari K. Jónsson,et al.  Constraint Maintenance with Preferences and Underlying Flexible Solution , 2003 .

[129]  S. Kambhampati,et al.  Sapa: A Domain-Independent Heuristic Metric Temporal Planner , 2014 .

[130]  Rob Sherwood,et al.  Using Iterative Repair to Increase the Responsiveness of Planning and Scheduling for Autonomous Spacecraft , 1999 .

[131]  K. Rajan,et al.  Preliminary Results for Model-Based Adaptive Control of an Autonomous Underwater Vehicle , 2008, ISER.

[132]  E. Gat On Three-Layer Architectures , 1997 .

[133]  Nicola Muscettola,et al.  Fast Transformation of Temporal Plans for Efficient Execution , 1998, AAAI/IAAI.

[134]  Malik Ghallab,et al.  Representation and Control in IxTeT, a Temporal Planner , 1994, AIPS.

[135]  Gaurav S. Sukhatme,et al.  Towards mixed-initiative, multi-robot field experiments: Design, deployment, and lessons learned , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[136]  Nicola Muscettola,et al.  HSTS: Integrating Planning and Scheduling , 1993 .

[137]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[138]  Richard Fikes,et al.  STRIPS: A New Approach to the Application of Theorem Proving to Problem Solving , 1971, IJCAI.

[139]  Martha E. Pollack,et al.  Is "Early Commitment" in Plan Generation Ever a Good Idea? , 1996, AAAI/IAAI, Vol. 2.

[140]  Steve Ankuo Chien,et al.  Autonomous Science on the EO-1 Mission , 2003 .

[141]  James G. Bellingham,et al.  An adaptive triggering method for capturing peak samples in a thin phytoplankton layer by an autonomous underwater vehicle , 2009, OCEANS 2009.

[142]  J. Bresina,et al.  Mixed-Initiative Planning in MAPGEN: Capabilities and Shortcomings , 2005 .

[143]  Félix Ingrand,et al.  Interleaving Temporal Planning and Execution in Robotics Domains , 2004, AAAI.