FMRIPrep: a robust preprocessing pipeline for functional MRI

[1]  Ninon Burgos,et al.  New advances in the Clinica software platform for clinical neuroimaging studies , 2019 .

[2]  Satrajit S. Ghosh,et al.  FMRIPrep: a robust preprocessing pipeline for functional MRI , 2018, bioRxiv.

[3]  Damien A. Fair,et al.  Behavioral interventions for reducing head motion during MRI scans in children , 2018, NeuroImage.

[4]  Ludovica Griffanti,et al.  Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank , 2017, NeuroImage.

[5]  Hiroshi Yamazaki,et al.  Phonological memory in sign language relies on the visuomotor neural system outside the left hemisphere language network , 2017, PloS one.

[6]  Jonathan D. Power,et al.  Temporal interpolation alters motion in fMRI scans: Magnitudes and consequences for artifact detection , 2017, PloS one.

[7]  Krzysztof J. Gorgolewski,et al.  MRIQC: Advancing the automatic prediction of image quality in MRI from unseen sites , 2016, bioRxiv.

[8]  Nils B. Kroemer,et al.  Integration of Sweet Taste and Metabolism Determines Carbohydrate Reward , 2017, Current Biology.

[9]  Evan M. Gordon,et al.  Precision Functional Mapping of Individual Human Brains , 2017, Neuron.

[10]  Krzysztof J. Gorgolewski,et al.  Preprocessed Consortium for Neuropsychiatric Phenomics dataset , 2017, F1000Research.

[11]  Mary Beth Nebel,et al.  The impact of T1 versus EPI spatial normalization templates for fMRI data analyses , 2017, Human brain mapping.

[12]  Chan-A Park,et al.  Sensing the effects of mouth breathing by using 3-tesla MRI , 2017 .

[13]  Vanessa Sochat,et al.  Singularity: Scientific containers for mobility of compute , 2017, PloS one.

[14]  Frank G. Hillary,et al.  The evolution of cost-efficiency in neural networks during recovery from traumatic brain injury , 2017, PloS one.

[15]  Thomas T. Liu,et al.  The global signal in fMRI: Nuisance or Information? , 2017, NeuroImage.

[16]  Brett K. Beaulieu-Jones,et al.  Reproducibility of computational workflows is automated using continuous analysis , 2017, Nature Biotechnology.

[17]  Andrew S. Nencka,et al.  Multiband multi-echo imaging of simultaneous oxygenation and flow timeseries for resting state connectivity , 2017, PloS one.

[18]  Wenbin Li,et al.  Evaluation of Field Map and Nonlinear Registration Methods for Correction of Susceptibility Artifacts in Diffusion MRI , 2017, Front. Neuroinform..

[19]  Luca Nanetti,et al.  Flavor pleasantness processing in the ventral emotion network , 2017, PloS one.

[20]  Timothy O. Laumann,et al.  Sources and implications of whole-brain fMRI signals in humans , 2017, NeuroImage.

[21]  César Caballero-Gaudes,et al.  Methods for cleaning the BOLD fMRI signal , 2016, NeuroImage.

[22]  Satrajit S. Ghosh,et al.  BIDS apps: Improving ease of use, accessibility, and reproducibility of neuroimaging data analysis methods , 2016, bioRxiv.

[23]  Samuel A. Nastase,et al.  Attention Selectively Reshapes the Geometry of Distributed Semantic Representation , 2016, bioRxiv.

[24]  Krzysztof J. Gorgolewski,et al.  Preprocessed Consortium for Neuropsychiatric Phenomics dataset. , 2017, F1000Research.

[25]  D. Steele,et al.  Neural correlates of fears of abandonment and rejection in borderline personality disorder , 2016 .

[26]  Satrajit S. Ghosh,et al.  Mindboggling morphometry of human brains , 2016, bioRxiv.

[27]  Xiao Gao,et al.  My Body Looks Like That Girl’s: Body Mass Index Modulates Brain Activity during Body Image Self-Reflection among Young Women , 2016, PloS one.

[28]  Pascal Tétreault,et al.  Brain Connectivity Predicts Placebo Response across Chronic Pain Clinical Trials , 2016, PLoS biology.

[29]  P. Matthews,et al.  Multimodal population brain imaging in the UK Biobank prospective epidemiological study , 2016, Nature Neuroscience.

[30]  Jing Wang,et al.  Identifying Core Affect in Individuals from fMRI Responses to Dynamic Naturalistic Audiovisual Stimuli , 2016, PloS one.

[31]  Ruth Ann Atchley,et al.  Development of a validated emotionally provocative musical stimulus set for research , 2016 .

[32]  Satrajit S. Ghosh,et al.  The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments , 2016, Scientific Data.

[33]  Krzysztof J. Gorgolewski,et al.  A phenome-wide examination of neural and cognitive function , 2016, Scientific Data.

[34]  Adrian Nestor,et al.  Awake, Offline Processing during Associative Learning , 2016, PloS one.

[35]  Rebecca Saxe,et al.  When minds matter for moral judgment: intent information is neurally encoded for harmful but not impure acts. , 2016, Social cognitive and affective neuroscience.

[36]  Roberto Gasparotti,et al.  Effects of Manganese Exposure on Olfactory Functions in Teenagers: A Pilot Study , 2016, PloS one.

[37]  Ella Gabitov,et al.  Learning from the other limb's experience: sharing the ‘trained’ M1 representation of the motor sequence knowledge , 2015, The Journal of physiology.

[38]  M. Filippi fMRI Techniques and Protocols , 2016, Neuromethods.

[39]  Andrea Bergmann,et al.  Statistical Parametric Mapping The Analysis Of Functional Brain Images , 2016 .

[40]  M. Farah,et al.  Progress and challenges in probing the human brain , 2015, Nature.

[41]  Krzysztof J. Gorgolewski,et al.  The human voice areas: Spatial organization and inter-individual variability in temporal and extra-temporal cortices , 2015, NeuroImage.

[42]  Evan M. Gordon,et al.  Functional System and Areal Organization of a Highly Sampled Individual Human Brain , 2015, Neuron.

[43]  Paul Sajda,et al.  Prestimulus EEG alpha oscillations modulate task-related fMRI BOLD responses to auditory stimuli , 2015, NeuroImage.

[44]  Alberto Llera,et al.  ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data , 2015, NeuroImage.

[45]  Eve Marder,et al.  Understanding Brains: Details, Intuition, and Big Data , 2015, PLoS biology.

[46]  Ella Gabitov,et al.  Patterns of Modulation in the Activity and Connectivity of Motor Cortex during the Repeated Generation of Movement Sequences , 2015, Journal of Cognitive Neuroscience.

[47]  T. Wager,et al.  Distinct Brain Systems Mediate the Effects of Nociceptive Input and Self-Regulation on Pain , 2015, PLoS biology.

[48]  Ella Gabitov,et al.  Done That: Short-term Repetition Related Modulations of Motor Cortex Activity as a Stable Signature for Overnight Motor Memory Consolidation , 2014, Journal of Cognitive Neuroscience.

[49]  Andrew S. Nencka,et al.  Quantification of the Statistical Effects of Spatiotemporal Processing of Nontask fMRI Data , 2014, Brain Connect..

[50]  Paul Sajda,et al.  Simultaneous EEG–fMRI reveals a temporal cascade of task-related and default-mode activations during a simple target detection task , 2014, NeuroImage.

[51]  T. Verstynen The organization and dynamics of corticostriatal pathways link the medial orbitofrontal cortex to future behavioral responses. , 2014, Journal of neurophysiology.

[52]  Armando Tartaro,et al.  Modafinil Alters Intrinsic Functional Connectivity of the Right Posterior Insula: A Pharmacological Resting State fMRI Study , 2014, PloS one.

[53]  Shane McIntosh,et al.  The impact of code review coverage and code review participation on software quality: a case study of the qt, VTK, and ITK projects , 2014, MSR 2014.

[54]  Michael Eickenberg,et al.  Machine learning for neuroimaging with scikit-learn , 2014, Front. Neuroinform..

[55]  Timothy O. Laumann,et al.  Methods to detect, characterize, and remove motion artifact in resting state fMRI , 2014, NeuroImage.

[56]  P. Sajda,et al.  Simultaneous EEG-fMRI Reveals Temporal Evolution of Coupling between Supramodal Cortical Attention Networks and the Brainstem , 2013, The Journal of Neuroscience.

[57]  Paul Sajda,et al.  Fast Bootstrapping and Permutation Testing for Assessing Reproducibility and Interpretability of Multivariate fMRI Decoding Models , 2013, PloS one.

[58]  Mark Jenkinson,et al.  The minimal preprocessing pipelines for the Human Connectome Project , 2013, NeuroImage.

[59]  Paul A. M. Smeets,et al.  Allured or alarmed: Counteractive control responses to food temptations in the brain , 2013, Behavioural Brain Research.

[60]  Amos Storkey,et al.  A test-retest fMRI dataset for motor, language and spatial attention functions , 2013, GigaScience.

[61]  R. Saxe,et al.  Decoding moral judgments from neural representations of intentions , 2013, Proceedings of the National Academy of Sciences.

[62]  Scott C Edmunds,et al.  Peering into peer-review at GigaScience , 2013, GigaScience.

[63]  Li Qingyang,et al.  Towards Automated Analysis of Connectomes: The Configurable Pipeline for the Analysis of Connectomes (C-PAC) , 2013 .

[64]  Margaret D. King,et al.  The NKI-Rockland Sample: A Model for Accelerating the Pace of Discovery Science in Psychiatry , 2012, Front. Neurosci..

[65]  Joshua Carp,et al.  The secret lives of experiments: Methods reporting in the fMRI literature , 2012, NeuroImage.

[66]  Bruce Fischl,et al.  FreeSurfer , 2012, NeuroImage.

[67]  Eliza Congdon,et al.  Decreasing Ventromedial Prefrontal Cortex Activity During Sequential Risk-Taking: An fMRI Investigation of the Balloon Analog Risk Task , 2012, Frontiers in Neuroscience.

[68]  Deanna M. Barch,et al.  Working Memory Related Brain Network Connectivity in Individuals with Schizophrenia and Their Siblings , 2012, Front. Hum. Neurosci..

[69]  Jason P. Mitchell,et al.  Social-Cognitive Deficits in Normal Aging , 2012, The Journal of Neuroscience.

[70]  Abraham Z. Snyder,et al.  Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion , 2012, NeuroImage.

[71]  Steen Moeller,et al.  The Human Connectome Project: A data acquisition perspective , 2012, NeuroImage.

[72]  Beatriz Luna,et al.  Developmental changes in brain function underlying the influence of reward processing on inhibitory control , 2011, Developmental Cognitive Neuroscience.

[73]  Karl J. Friston,et al.  Slice-timing effects and their correction in functional MRI , 2011, NeuroImage.

[74]  Anthony D Wagner,et al.  Dissociable Effects of Top-Down and Bottom-Up Attention during Episodic Encoding , 2011, The Journal of Neuroscience.

[75]  Satrajit S. Ghosh,et al.  Nipype: A Flexible, Lightweight and Extensible Neuroimaging Data Processing Framework in Python , 2011, Front. Neuroinform..

[76]  D. Barch,et al.  Brain Network Connectivity in Individuals with Schizophrenia and Their Siblings , 2011, Biological Psychiatry.

[77]  Yufeng Zang,et al.  Linking inter-individual differences in neural activation and behavior to intrinsic brain dynamics , 2011, NeuroImage.

[78]  Arno Klein,et al.  A reproducible evaluation of ANTs similarity metric performance in brain image registration , 2011, NeuroImage.

[79]  Bruce Fischl,et al.  Highly accurate inverse consistent registration: A robust approach , 2010, NeuroImage.

[80]  Bharat B. Biswal,et al.  Inter-individual differences in resting-state functional connectivity predict task-induced BOLD activity , 2010, NeuroImage.

[81]  Brian B. Avants,et al.  N4ITK: Improved N3 Bias Correction , 2010, IEEE Transactions on Medical Imaging.

[82]  K. Velanova,et al.  Immaturities in Reward Processing and Its Influence on Inhibitory Control in Adolescence , 2009, Cerebral cortex.

[83]  J. Ashburner Preparing fMRI Data for Statistical Analysis , 2009 .

[84]  Bruce Fischl,et al.  Accurate and robust brain image alignment using boundary-based registration , 2009, NeuroImage.

[85]  Joseph T. Devlin,et al.  Consistency and variability in functional localisers , 2009, NeuroImage.

[86]  C. Almli,et al.  Unbiased nonlinear average age-appropriate brain templates from birth to adulthood , 2009, NeuroImage.

[87]  Arno Klein,et al.  Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration , 2009, NeuroImage.

[88]  Kevin Murphy,et al.  The impact of global signal regression on resting state correlations: Are anti-correlated networks introduced? , 2009, NeuroImage.

[89]  M. E. Wheeler,et al.  Maturational changes in anterior cingulate and frontoparietal recruitment support the development of error processing and inhibitory control. , 2008, Cerebral cortex.

[90]  M. Lindquist The Statistical Analysis of fMRI Data. , 2008, 0906.3662.

[91]  Brent L. Hughes,et al.  Prefrontal-Subcortical Pathways Mediating Successful Emotion Regulation , 2008, Neuron.

[92]  R. Poldrack,et al.  Common neural substrates for inhibition of spoken and manual responses. , 2008, Cerebral cortex.

[93]  Russell A. Poldrack,et al.  Guidelines for reporting an fMRI study , 2008, NeuroImage.

[94]  Brian B. Avants,et al.  Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain , 2008, Medical Image Anal..

[95]  Bharat B. Biswal,et al.  Competition between functional brain networks mediates behavioral variability , 2008, NeuroImage.

[96]  Russell A. Poldrack,et al.  The Neural Substrates of Visual Perceptual Learning of Words: Implications for the Visual Word Form Area Hypothesis , 2007, Journal of Cognitive Neuroscience.

[97]  John G. Csernansky,et al.  Open Access Series of Imaging Studies (OASIS): Cross-sectional MRI Data in Young, Middle Aged, Nondemented, and Demented Older Adults , 2007, Journal of Cognitive Neuroscience.

[98]  Thomas T. Liu,et al.  A component based noise correction method (CompCor) for BOLD and perfusion based fMRI , 2007, NeuroImage.

[99]  Timothy Edward John Behrens,et al.  Triangulating a Cognitive Control Network Using Diffusion-Weighted Magnetic Resonance Imaging (MRI) and Functional MRI , 2007, The Journal of Neuroscience.

[100]  Sabrina M. Tom,et al.  The Neural Basis of Loss Aversion in Decision-Making Under Risk , 2007, Science.

[101]  Karl J. Friston,et al.  Statistical parametric mapping , 2013 .

[102]  Russell A Poldrack,et al.  Modulation of competing memory systems by distraction. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[103]  S.C. Strother,et al.  Evaluating fMRI preprocessing pipelines , 2006, IEEE Engineering in Medicine and Biology Magazine.

[104]  Russell A. Poldrack,et al.  Long-term test–retest reliability of functional MRI in a classification learning task , 2006, NeuroImage.

[105]  Richard J. Davidson,et al.  Comparison of fMRI motion correction software tools , 2005, NeuroImage.

[106]  Stephen José Hanson,et al.  Combinatorial codes in ventral temporal lobe for object recognition: Haxby (2001) revisited: is there a “face” area? , 2004, NeuroImage.

[107]  Stephen M. Smith,et al.  General multilevel linear modeling for group analysis in FMRI , 2003, NeuroImage.

[108]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[109]  Lars Kai Hansen,et al.  The Quantitative Evaluation of Functional Neuroimaging Experiments: The NPAIRS Data Analysis Framework , 2000, NeuroImage.

[110]  M. Gluck,et al.  Interactive memory systems in the human brain , 2001, Nature.

[111]  A. Ishai,et al.  Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex , 2001, Science.

[112]  Stephen M. Smith,et al.  Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm , 2001, IEEE Transactions on Medical Imaging.

[113]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[114]  R W Cox,et al.  Software tools for analysis and visualization of fMRI data , 1997, NMR in biomedicine.

[115]  C. Lanczos Evaluation of Noisy Data , 1964 .