Generalizing to Unseen Domains: A Survey on Domain Generalization

Machine learning systems generally assume that the training and testing distributions are the same. To this end, a key requirement is to develop models that can generalize to unseen distributions. Domain generalization (DG), i.e., out-of-distribution generalization, has attracted increasing interests in recent years. Domain generalization deals with a challenging setting where one or several different but related domain(s) are given, and the goal is to learn a model that can generalize to an unseen test domain. Great progress has been made in the area of domain generalization for years. This paper presents the first review of recent advances in this area. First, we provide a formal definition of domain generalization and discuss several related fields. We then thoroughly review the theories related to domain generalization and carefully analyze the theory behind generalization. We categorize recent algorithms into three classes: data manipulation, representation learning, and learning strategy, and present several popular algorithms in detail for each category. Third, we introduce the commonly used datasets, applications, and our open-sourced codebase for fair evaluation. Finally, we summarize existing literature and present some potential research topics for the future.

[1]  Habib Hamam,et al.  Artificial Intelligence Review , 2019, Advanced Methodologies and Technologies in Artificial Intelligence, Computer Simulation, and Human-Computer Interaction.

[2]  Wang Lu,et al.  Local and Global Alignments for Generalizable Sensor-Based Human Activity Recognition , 2022, ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[3]  Yao Guo,et al.  ReMoS: Reducing Defect Inheritance in Transfer Learning via Relevant Model Slicing , 2022, 2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE).

[4]  Ronghang Zhu,et al.  Self-supervised Universal Domain Adaptation with Adaptive Memory Separation , 2021, 2021 IEEE International Conference on Data Mining (ICDM).

[5]  Dongyeop Kang,et al.  Understanding Out-of-distribution: A Perspective of Data Dynamics , 2021, ICBINB@NeurIPS.

[6]  E. Xing,et al.  Towards Principled Disentanglement for Domain Generalization , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[7]  D. Rueckert,et al.  Causality-Inspired Single-Source Domain Generalization for Medical Image Segmentation , 2021, IEEE Transactions on Medical Imaging.

[8]  Dinggang Shen,et al.  Domain Generalization for Mammography Detection via Multi-style and Multi-view Contrastive Learning , 2021, MICCAI.

[9]  Hongyu Huang,et al.  Federated Learning with Domain Generalization , 2021, ArXiv.

[10]  Ziwei Liu,et al.  Generalized Out-of-Distribution Detection: A Survey , 2021, International Journal of Computer Vision.

[11]  Barbara Caputo,et al.  Domain Generalization through Audio-Visual Relative Norm Alignment in First Person Action Recognition , 2021, 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV).

[12]  Anh Tuan Tran,et al.  Exploiting Domain-Specific Features to Enhance Domain Generalization , 2021, NeurIPS.

[13]  Yun Fu,et al.  Domain Generalization via Feature Variation Decorrelation , 2021, ACM Multimedia.

[14]  T. Shinozaki,et al.  FlexMatch: Boosting Semi-Supervised Learning with Curriculum Pseudo Labeling , 2021, NeurIPS.

[15]  Weidong Qiu,et al.  Scale Invariant Domain Generalization Image Recapture Detection , 2021, ICONIP.

[16]  Shruti Tople,et al.  The Connection between Out-of-Distribution Generalization and Privacy of ML Models , 2021, ArXiv.

[17]  S. Gong,et al.  Collaborative Optimization and Aggregation for Decentralized Domain Generalization and Adaptation , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[18]  Timothy M. Hospedales,et al.  A Simple Feature Augmentation for Domain Generalization , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[19]  Lap-Pui Chau,et al.  Variational Disentanglement for Domain Generalization , 2021, Trans. Mach. Learn. Res..

[20]  Maruthi Narayanan,et al.  Shape-Biased Domain Generalization via Shock Graph Embeddings , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[21]  Yang Li,et al.  Class-conditioned Domain Generalization via Wasserstein Distributional Robust Optimization , 2021, ArXiv.

[22]  M. Cord,et al.  Fishr: Invariant Gradient Variances for Out-of-distribution Generalization , 2021, ICML.

[23]  Steven G. McDonagh,et al.  On the Out-of-distribution Generalization of Probabilistic Image Modelling , 2021, NeurIPS.

[24]  Kwanghoon Sohn,et al.  Self-Balanced Learning for Domain Generalization , 2021, 2021 IEEE International Conference on Image Processing (ICIP).

[25]  Peng Cui,et al.  Towards Out-Of-Distribution Generalization: A Survey , 2021, ArXiv.

[26]  Mahsa Baktash,et al.  Learning to Diversify for Single Domain Generalization , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[27]  Hyeran Byun,et al.  Feature Stylization and Domain-aware Contrastive Learning for Domain Generalization , 2021, ACM Multimedia.

[28]  Sinno Jialin Pan,et al.  AdaRNN: Adaptive Learning and Forecasting of Time Series , 2021, CIKM.

[29]  Xi Peng,et al.  Out-of-Domain Generalization From a Single Source: An Uncertainty Quantification Approach , 2021, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Chelsea Finn,et al.  Just Train Twice: Improving Group Robustness without Training Group Information , 2021, ICML.

[31]  Haoliang Li,et al.  Embracing the Dark Knowledge: Domain Generalization Using Regularized Knowledge Distillation , 2021, ACM Multimedia.

[32]  Liming Chen,et al.  Encouraging Intra-Class Diversity Through a Reverse Contrastive Loss for Single-Source Domain Generalization , 2021, 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW).

[33]  Yoshua Bengio,et al.  Invariance Principle Meets Information Bottleneck for Out-of-Distribution Generalization , 2021, NeurIPS.

[34]  Zhenguo Li,et al.  Towards a Theoretical Framework of Out-of-Distribution Generalization , 2021, NeurIPS.

[35]  Aaron C. Courville,et al.  Can Subnetwork Structure be the Key to Out-of-Distribution Generalization? , 2021, ICML.

[36]  Kaiyang Zhou,et al.  Semi-Supervised Domain Generalization with Stochastic StyleMatch , 2021, International Journal of Computer Vision.

[37]  Qifei Wang,et al.  Adversarially Adaptive Normalization for Single Domain Generalization , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[38]  Donggeun Yoo,et al.  Reducing Domain Gap by Reducing Style Bias , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[39]  Changjian Shui,et al.  On the benefits of representation regularization in invariance based domain generalization , 2021, Machine Learning.

[40]  Qi Tian,et al.  A Fourier-based Framework for Domain Generalization , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[41]  Chunyan Miao,et al.  Latent Independent Excitation for Generalizable Sensor-based Cross-Person Activity Recognition , 2021, AAAI.

[42]  R. Zemel,et al.  Learning a Universal Template for Few-shot Dataset Generalization , 2021, ICML.

[43]  Philip H. S. Torr,et al.  Gradient Matching for Domain Generalization , 2021, ICLR.

[44]  Seunghyun Park,et al.  SelfReg: Self-supervised Contrastive Regularization for Domain Generalization , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[45]  Peng Cui,et al.  Deep Stable Learning for Out-Of-Distribution Generalization , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[46]  Sanja Fidler,et al.  Semantic Segmentation with Generative Models: Semi-Supervised Learning and Strong Out-of-Domain Generalization , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[47]  Zhangjie Cao,et al.  Open Domain Generalization with Domain-Augmented Meta-Learning , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[48]  Y. Qiao,et al.  Domain Generalization with MixStyle , 2021, ICLR.

[49]  Thomas G. Dietterich,et al.  Confidence Calibration for Domain Generalization under Covariate Shift , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[50]  Juan Cao,et al.  Progressive Domain Expansion Network for Single Domain Generalization , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[51]  Seungryong Kim,et al.  RobustNet: Improving Domain Generalization in Urban-Scene Segmentation via Instance Selective Whitening , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[52]  Abhimanyu Dubey,et al.  Adaptive Methods for Real-World Domain Generalization , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[53]  Yi-Hsuan Tsai,et al.  Cross-Domain Similarity Learning for Face Recognition in Unseen Domains , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[54]  Xi Peng,et al.  Uncertainty-guided Model Generalization to Unseen Domains , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[55]  Pheng-Ann Heng,et al.  FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[56]  Chen Change Loy,et al.  Domain Generalization: A Survey , 2021, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[57]  Shijian Lu,et al.  FSDR: Frequency Space Domain Randomization for Domain Generalization , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[58]  Chris Xing Tian,et al.  Neuron Coverage-Guided Domain Generalization , 2021, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[59]  George J. Pappas,et al.  Model-Based Domain Generalization , 2021, NeurIPS.

[60]  Uri Shalit,et al.  On Calibration and Out-of-domain Generalization , 2021, NeurIPS.

[61]  Ramon Sagarna,et al.  Robust Domain-Free Domain Generalization with Class-Aware Alignment , 2021, ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[62]  Sungrae Park,et al.  SWAD: Domain Generalization by Seeking Flat Minima , 2021, NeurIPS.

[63]  Neel Sundaresan,et al.  CodeXGLUE: A Machine Learning Benchmark Dataset for Code Understanding and Generation , 2021, NeurIPS Datasets and Benchmarks.

[64]  Seong Jae Hwang,et al.  Domain adversarial neural networks for domain generalization: when it works and how to improve , 2021, Machine Learning.

[65]  Ruocheng Guo,et al.  Out-of-distribution Prediction with Invariant Risk Minimization: The Limitation and An Effective Fix , 2021, ArXiv.

[66]  Zhibo Chen,et al.  Style Normalization and Restitution for Domain Generalization and Adaptation , 2021, IEEE Transactions on Multimedia.

[67]  Magdalena Biesialska,et al.  Continual Lifelong Learning in Natural Language Processing: A Survey , 2020, COLING.

[68]  Pang Wei Koh,et al.  WILDS: A Benchmark of in-the-Wild Distribution Shifts , 2020, ICML.

[69]  Ji-Hoon Jeong,et al.  Domain Generalization for Session-Independent Brain-Computer Interface , 2020, 2021 9th International Winter Conference on Brain-Computer Interface (BCI).

[70]  Nicu Sebe,et al.  Learning to Generalize Unseen Domains via Memory-based Multi-Source Meta-Learning for Person Re-Identification , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[71]  Shengcai Liao,et al.  DomainMix: Learning Generalizable Person Re-Identification Without Human Annotations , 2020, BMVC.

[72]  Edward Chen,et al.  A Study of Domain Generalization on Ultrasound-based Multi-Class Segmentation of Arteries, Veins, Ligaments, and Nerves Using Transfer Learning , 2020, ArXiv.

[73]  Tie-Yan Liu,et al.  Learning Causal Semantic Representation for Out-of-Distribution Prediction , 2020, NeurIPS.

[74]  Di Zhuang,et al.  Discriminative Adversarial Domain Generalization with Meta-learning based Cross-domain Validation , 2020, Neurocomputing.

[75]  Kush R. Varshney,et al.  Empirical or Invariant Risk Minimization? A Sample Complexity Perspective , 2020, ICLR.

[76]  Mirella Lapata,et al.  Meta-Learning for Domain Generalization in Semantic Parsing , 2020, NAACL.

[77]  Charles Blundell,et al.  Representation Learning via Invariant Causal Mechanisms , 2020, ICLR.

[78]  Pradeep Ravikumar,et al.  The Risks of Invariant Risk Minimization , 2020, ICLR.

[79]  Jipu Li,et al.  Deep Semisupervised Domain Generalization Network for Rotary Machinery Fault Diagnosis Under Variable Speed , 2020, IEEE Transactions on Instrumentation and Measurement.

[80]  Hong Liu,et al.  Towards Domain Generalization In Underwater Object Detection , 2020, 2020 IEEE International Conference on Image Processing (ICIP).

[81]  Federico Tombari,et al.  Batch Normalization Embeddings for Deep Domain Generalization , 2020, Pattern Recognit..

[82]  Martin Ester,et al.  Domain Generalization via Semi-supervised Meta Learning , 2020, ArXiv.

[83]  B. Schölkopf,et al.  Learning explanations that are hard to vary , 2020, ICLR.

[84]  Vineeth N. Balasubramanian,et al.  Zero-Shot Domain Generalization , 2020, BMVC.

[85]  Xu Li,et al.  Domain generalization in rotating machinery fault diagnostics using deep neural networks , 2020, Neurocomputing.

[86]  Elisa Ricci,et al.  Towards Recognizing Unseen Categories in Unseen Domains , 2020, ECCV.

[87]  Brahim Chaib-draa,et al.  Domain Generalization with Optimal Transport and Metric Learning , 2020, ArXiv.

[88]  Kate Saenko,et al.  Domain2Vec: Domain Embedding for Unsupervised Domain Adaptation , 2020, ECCV.

[89]  Ling Shao,et al.  Learning to Learn with Variational Information Bottleneck for Domain Generalization , 2020, ECCV.

[90]  Eric P. Xing,et al.  Self-Challenging Improves Cross-Domain Generalization , 2020, ECCV.

[91]  Hao Wang,et al.  Continuously Indexed Domain Adaptation , 2020, ICML.

[92]  David Lopez-Paz,et al.  In Search of Lost Domain Generalization , 2020, ICLR.

[93]  Zhen Wang,et al.  Unseen Target Stance Detection with Adversarial Domain Generalization , 2020, 2020 International Joint Conference on Neural Networks (IJCNN).

[94]  Shengcai Liao,et al.  Surpassing Real-World Source Training Data: Random 3D Characters for Generalizable Person Re-Identification , 2020, ACM Multimedia.

[95]  Cuiling Lan,et al.  Feature Alignment and Restoration for Domain Generalization and Adaptation , 2020, ArXiv.

[96]  Abdel-rahman Mohamed,et al.  wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations , 2020, NeurIPS.

[97]  Chih-Yao Ma,et al.  Frustratingly Simple Domain Generalization via Image Stylization , 2020, ArXiv.

[98]  Amit Sharma,et al.  Domain Generalization using Causal Matching , 2020, ICML.

[99]  Anirudha Majumdar,et al.  Invariant Policy Optimization: Towards Stronger Generalization in Reinforcement Learning , 2020, L4DC.

[100]  Rickmer Braren,et al.  Secure, privacy-preserving and federated machine learning in medical imaging , 2020, Nature Machine Intelligence.

[101]  Mark Chen,et al.  Language Models are Few-Shot Learners , 2020, NeurIPS.

[102]  Cuiling Lan,et al.  Style Normalization and Restitution for Generalizable Person Re-Identification , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[103]  S. Ermon,et al.  Using publicly available satellite imagery and deep learning to understand economic well-being in Africa , 2020, Nature Communications.

[104]  Fuzhen Zhuang,et al.  Deep Subdomain Adaptation Network for Image Classification , 2020, IEEE Transactions on Neural Networks and Learning Systems.

[105]  Kun Zhang,et al.  A Causal View on Robustness of Neural Networks , 2020, NeurIPS.

[106]  J. Leskovec,et al.  Open Graph Benchmark: Datasets for Machine Learning on Graphs , 2020, NeurIPS.

[107]  K. P. Ayodele,et al.  Supervised domain generalization for integration of disparate scalp EEG datasets for automatic epileptic seizure detection , 2020, Comput. Biol. Medicine.

[108]  Yufei Wang,et al.  Heterogeneous Domain Generalization Via Domain Mixup , 2020, ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[109]  Jongbin Ryu,et al.  Generalized Convolutional Forest Networks for Domain Generalization and Visual Recognition , 2020, ICLR.

[110]  Xilin Chen,et al.  Single-Side Domain Generalization for Face Anti-Spoofing , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[111]  Minhajul A. Badhon,et al.  Global Wheat Head Detection (GWHD) Dataset: A Large and Diverse Dataset of High-Resolution RGB-Labelled Images to Develop and Benchmark Wheat Head Detection Methods , 2020, Plant phenomics.

[112]  Sara Beery,et al.  The iWildCam 2020 Competition Dataset , 2020, ArXiv.

[113]  Timothy M. Hospedales,et al.  Meta-Learning in Neural Networks: A Survey , 2020, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[114]  Yo Joong Choe,et al.  An Empirical Study of Invariant Risk Minimization , 2020, ArXiv.

[115]  Yongxin Yang,et al.  Sequential Learning for Domain Generalization , 2020, ECCV Workshops.

[116]  Xi Peng,et al.  Learning to Learn Single Domain Generalization , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[117]  Sunita Sarawagi,et al.  Efficient Domain Generalization via Common-Specific Low-Rank Decomposition , 2020, ICML.

[118]  Tao Xiang,et al.  Domain Adaptive Ensemble Learning , 2020, IEEE Transactions on Image Processing.

[119]  Kate Saenko,et al.  Explainable Deep Classification Models for Domain Generalization , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[120]  Tao Xiang,et al.  Deep Domain-Adversarial Image Generation for Domain Generalisation , 2020, AAAI.

[121]  Aaron C. Courville,et al.  Out-of-Distribution Generalization via Risk Extrapolation (REx) , 2020, ICML.

[122]  Zhiwei Steven Wu,et al.  Learn to Expect the Unexpected: Probably Approximately Correct Domain Generalization , 2020, AISTATS.

[123]  Kush R. Varshney,et al.  Invariant Risk Minimization Games , 2020, ICML.

[124]  Proceedings of the IEEE , 2020, IEEE Transactions on Automatic Control.

[125]  David Berthelot,et al.  FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence , 2020, NeurIPS.

[126]  Yang Liu,et al.  Federated Learning , 2019, Synthesis Lectures on Artificial Intelligence and Machine Learning.

[127]  Sridha Sridharan,et al.  Correlation-aware Adversarial Domain Adaptation and Generalization , 2019, Pattern Recognit..

[128]  Tatsunori B. Hashimoto,et al.  Distributionally Robust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-Case Generalization , 2019, ArXiv.

[129]  Tatsuya Harada,et al.  Domain Generalization Using a Mixture of Multiple Latent Domains , 2019, AAAI.

[130]  Hui Xiong,et al.  A Comprehensive Survey on Transfer Learning , 2019, Proceedings of the IEEE.

[131]  Ioannis Mitliagkas,et al.  Adversarial target-invariant representation learning for domain generalization , 2019, ArXiv.

[132]  Jianmo Ni,et al.  Justifying Recommendations using Distantly-Labeled Reviews and Fine-Grained Aspects , 2019, EMNLP.

[133]  Daniel C. Castro,et al.  Domain Generalization via Model-Agnostic Learning of Semantic Features , 2019, NeurIPS.

[134]  Zhong Ji,et al.  A decadal survey of zero-shot image classification , 2019, SCIENTIA SINICA Informationis.

[135]  Yiqiang Chen,et al.  Transfer Learning with Dynamic Distribution Adaptation , 2019, ACM Trans. Intell. Syst. Technol..

[136]  K. Keutzer,et al.  Domain Randomization and Pyramid Consistency: Simulation-to-Real Generalization Without Accessing Target Domain Data , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[137]  Sanjay Mehrotra,et al.  Distributionally Robust Optimization: A Review , 2019, ArXiv.

[138]  Xin Qin,et al.  FedHealth: A Federated Transfer Learning Framework for Wearable Healthcare , 2019, IEEE Intelligent Systems.

[139]  Bohyung Han,et al.  Learning to Optimize Domain Specific Normalization for Domain Generalization , 2019, ECCV.

[140]  Taghi M. Khoshgoftaar,et al.  A survey on Image Data Augmentation for Deep Learning , 2019, Journal of Big Data.

[141]  David Lopez-Paz,et al.  Invariant Risk Minimization , 2019, ArXiv.

[142]  Zhitang Chen,et al.  Domain Generalization via Multidomain Discriminant Analysis , 2019, UAI.

[143]  Lucy Rosenbloom arXiv , 2019, The Charleston Advisor.

[144]  Peng Cui,et al.  Towards Non-I.I.D. image classification: A dataset and baselines , 2019, Pattern Recognit..

[145]  Tao Xiang,et al.  Generalizable Person Re-Identification by Domain-Invariant Mapping Network , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[146]  Pong C. Yuen,et al.  Multi-Adversarial Discriminative Deep Domain Generalization for Face Presentation Attack Detection , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[147]  Minh-Triet Tran,et al.  Recognition in Unseen Domains: Domain Generalization via Universal Non-volume Preserving Models , 2019, ArXiv.

[148]  Minh-Triet Tran,et al.  Image Alignment in Unseen Domains via Domain Deep Generalization , 2019, ArXiv.

[149]  Yunwen Lei,et al.  A Generalization Error Bound for Multi-class Domain Generalization , 2019, ArXiv.

[150]  Jakub M. Tomczak,et al.  DIVA: Domain Invariant Variational Autoencoders , 2019, DGS@ICLR.

[151]  Qiuqi Ruan,et al.  Frustratingly Easy Person Re-Identification: Generalizing Person Re-ID in Practice , 2019, BMVC.

[152]  Kate Saenko,et al.  Domain Agnostic Learning with Disentangled Representations , 2019, ICML.

[153]  Jindong Wang,et al.  Easy Transfer Learning By Exploiting Intra-Domain Structures , 2019, 2019 IEEE International Conference on Multimedia and Expo (ICME).

[154]  Fabio Maria Carlucci,et al.  Domain Generalization by Solving Jigsaw Puzzles , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[155]  Lucy Vasserman,et al.  Nuanced Metrics for Measuring Unintended Bias with Real Data for Text Classification , 2019, WWW.

[156]  Rajesh Ranganath,et al.  Support and Invertibility in Domain-Invariant Representations , 2019, AISTATS.

[157]  Yingli Tian,et al.  Self-Supervised Visual Feature Learning With Deep Neural Networks: A Survey , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[158]  Shaoqun Zeng,et al.  From Detection of Individual Metastases to Classification of Lymph Node Status at the Patient Level: The CAMELYON17 Challenge , 2019, IEEE Transactions on Medical Imaging.

[159]  Wei Zhou,et al.  Feature-Critic Networks for Heterogeneous Domain Generalization , 2019, ICML.

[160]  Yongxin Yang,et al.  Episodic Training for Domain Generalization , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[161]  Chunyan Miao,et al.  A Survey of Zero-Shot Learning , 2019, ACM Trans. Intell. Syst. Technol..

[162]  Sridha Sridharan,et al.  Multi-Component Image Translation for Deep Domain Generalization , 2018, 2019 IEEE Winter Conference on Applications of Computer Vision (WACV).

[163]  L. Gool,et al.  DLOW: Domain Flow for Adaptation and Generalization , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[164]  Yun Fu,et al.  Deep Domain Adaptation , 2018, Learning Representation for Multi-View Data Analysis.

[165]  Bo Wang,et al.  Moment Matching for Multi-Source Domain Adaptation , 2018, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[166]  Swami Sankaranarayanan,et al.  MetaReg: Towards Domain Generalization using Meta-Regularization , 2018, NeurIPS.

[167]  Jian-Huang Lai,et al.  Domain Attention Model for Domain Generalization in Object Detection , 2018, PRCV.

[168]  Kris M. Kitani,et al.  Domain Randomization for Scene-Specific Car Detection and Pose Estimation , 2018, 2019 IEEE Winter Conference on Applications of Computer Vision (WACV).

[169]  Stanley T. Birchfield,et al.  Structured Domain Randomization: Bridging the Reality Gap by Context-Aware Synthetic Data , 2018, 2019 International Conference on Robotics and Automation (ICRA).

[170]  Joaquin Vanschoren,et al.  Meta-Learning: A Survey , 2018, Automated Machine Learning.

[171]  Barbara Caputo,et al.  Domain Generalization with Domain-Specific Aggregation Modules , 2018, GCPR.

[172]  D. Tao,et al.  Deep Domain Generalization via Conditional Invariant Adversarial Networks , 2018, ECCV.

[173]  Yu-Chiang Frank Wang,et al.  A Unified Feature Disentangler for Multi-Domain Image Translation and Manipulation , 2018, NeurIPS.

[174]  Fabio Maria Carlucci,et al.  Hallucinating Agnostic Images to Generalize Across Domains , 2018, 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW).

[175]  Xiaoou Tang,et al.  Two at Once: Enhancing Learning and Generalization Capacities via IBN-Net , 2018, ECCV.

[176]  Philip S. Yu,et al.  Visual Domain Adaptation with Manifold Embedded Distribution Alignment , 2018, ACM Multimedia.

[177]  Pietro Perona,et al.  Recognition in Terra Incognita , 2018, ECCV.

[178]  Ankit Bansal,et al.  Domain2Vec: Deep Domain Generalization , 2018, ArXiv.

[179]  Barbara Caputo,et al.  Best Sources Forward: Domain Generalization through Source-Specific Nets , 2018, 2018 25th IEEE International Conference on Image Processing (ICIP).

[180]  Alex ChiChung Kot,et al.  Domain Generalization with Adversarial Feature Learning , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[181]  Hyo-Eun Kim,et al.  Batch-Instance Normalization for Adaptively Style-Invariant Neural Networks , 2018, NeurIPS.

[182]  Wen Li,et al.  Domain Generalization and Adaptation Using Low Rank Exemplar SVMs , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[183]  Silvio Savarese,et al.  Generalizing to Unseen Domains via Adversarial Data Augmentation , 2018, NeurIPS.

[184]  Dacheng Tao,et al.  Domain Generalization via Conditional Invariant Representations , 2018, AAAI.

[185]  Varun Jampani,et al.  Training Deep Networks with Synthetic Data: Bridging the Reality Gap by Domain Randomization , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[186]  Dacheng Tao,et al.  Causal Generative Domain Adaptation Networks , 2018, ArXiv.

[187]  Barbara Caputo,et al.  Robust Place Categorization With Deep Domain Generalization , 2018, IEEE Robotics and Automation Letters.

[188]  Sunita Sarawagi,et al.  Generalizing Across Domains via Cross-Gradient Training , 2018, ICLR.

[189]  Mei Wang,et al.  Deep Visual Domain Adaptation: A Survey , 2018, Neurocomputing.

[190]  Luc Van Gool,et al.  ComboGAN: Unrestrained Scalability for Image Domain Translation , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[191]  Gilles Blanchard,et al.  Domain Generalization by Marginal Transfer Learning , 2017, J. Mach. Learn. Res..

[192]  Gordon Christie,et al.  Functional Map of the World , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[193]  Bernhard Schölkopf,et al.  Wasserstein Auto-Encoders , 2017, ICLR.

[194]  Christina Heinze-Deml,et al.  Conditional variance penalties and domain shift robustness , 2017, Machine Learning.

[195]  Hongyi Zhang,et al.  mixup: Beyond Empirical Risk Minimization , 2017, ICLR.

[196]  Marcin Andrychowicz,et al.  Sim-to-Real Transfer of Robotic Control with Dynamics Randomization , 2017, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[197]  Yongxin Yang,et al.  Deeper, Broader and Artier Domain Generalization , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[198]  Donald A. Adjeroh,et al.  Unified Deep Supervised Domain Adaptation and Generalization , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[199]  Sethuraman Panchanathan,et al.  Deep Hashing Network for Unsupervised Domain Adaptation , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[200]  Serge J. Belongie,et al.  Arbitrary Style Transfer in Real-Time with Adaptive Instance Normalization , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[201]  P. Abbeel,et al.  Domain randomization for transferring deep neural networks from simulation to the real world , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[202]  Richard S. Zemel,et al.  Prototypical Networks for Few-shot Learning , 2017, NIPS.

[203]  Sergey Levine,et al.  Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks , 2017, ICML.

[204]  Kate Saenko,et al.  Synthetic to Real Adaptation with Generative Correlation Alignment Networks , 2017, 2018 IEEE Winter Conference on Applications of Computer Vision (WACV).

[205]  Andrea Vedaldi,et al.  Improved Texture Networks: Maximizing Quality and Diversity in Feed-Forward Stylization and Texture Synthesis , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[206]  Jonathon Shlens,et al.  A Learned Representation For Artistic Style , 2016, ICLR.

[207]  Martin T. Vechev,et al.  Probabilistic model for code with decision trees , 2016, OOPSLA.

[208]  Vladlen Koltun,et al.  Playing for Data: Ground Truth from Computer Games , 2016, ECCV.

[209]  Andrea Vedaldi,et al.  Instance Normalization: The Missing Ingredient for Fast Stylization , 2016, ArXiv.

[210]  James Bailey,et al.  Robust Domain Generalisation by Enforcing Distribution Invariance , 2016, IJCAI.

[211]  Kate Saenko,et al.  Deep CORAL: Correlation Alignment for Deep Domain Adaptation , 2016, ECCV Workshops.

[212]  Antonio M. López,et al.  The SYNTHIA Dataset: A Large Collection of Synthetic Images for Semantic Segmentation of Urban Scenes , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[213]  Daan Wierstra,et al.  Meta-Learning with Memory-Augmented Neural Networks , 2016, ICML.

[214]  J. Schulman,et al.  OpenAI Gym , 2016, ArXiv.

[215]  Tianbao Yang,et al.  Learning Attributes Equals Multi-Source Domain Generalization , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[216]  Sebastian Ramos,et al.  The Cityscapes Dataset for Semantic Urban Scene Understanding , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[217]  Dong Xu,et al.  Multi-view Domain Generalization for Visual Recognition , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[218]  Kate Saenko,et al.  Return of Frustratingly Easy Domain Adaptation , 2015, AAAI.

[219]  Mengjie Zhang,et al.  Scatter Component Analysis: A Unified Framework for Domain Adaptation and Domain Generalization , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[220]  Mengjie Zhang,et al.  Domain Generalization for Object Recognition with Multi-task Autoencoders , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[221]  Tom Heskes,et al.  Domain Generalization Based on Transfer Component Analysis , 2015, IWANN.

[222]  François Laviolette,et al.  Domain-Adversarial Training of Neural Networks , 2015, J. Mach. Learn. Res..

[223]  Rama Chellappa,et al.  Visual Domain Adaptation: A survey of recent advances , 2015, IEEE Signal Processing Magazine.

[224]  Bernhard Schölkopf,et al.  Multi-Source Domain Adaptation: A Causal View , 2015, AAAI.

[225]  Trevor Darrell,et al.  Deep Domain Confusion: Maximizing for Domain Invariance , 2014, CVPR 2014.

[226]  Victor S. Lempitsky,et al.  Unsupervised Domain Adaptation by Backpropagation , 2014, ICML.

[227]  Dong Xu,et al.  Exploiting Low-Rank Structure from Latent Domains for Domain Generalization , 2014, ECCV.

[228]  Aaron C. Courville,et al.  Generative adversarial networks , 2014, Commun. ACM.

[229]  Diederik P. Kingma,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[230]  Ye Xu,et al.  Unbiased Metric Learning: On the Utilization of Multiple Datasets and Web Images for Softening Bias , 2013, 2013 IEEE International Conference on Computer Vision.

[231]  Bernhard Schölkopf,et al.  Domain Adaptation under Target and Conditional Shift , 2013, ICML.

[232]  Bernhard Schölkopf,et al.  Domain Generalization via Invariant Feature Representation , 2013, ICML.

[233]  Alexei A. Efros,et al.  Undoing the Damage of Dataset Bias , 2012, ECCV.

[234]  Bernhard Schölkopf,et al.  On causal and anticausal learning , 2012, ICML.

[235]  Pascal Vincent,et al.  Representation Learning: A Review and New Perspectives , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[236]  Bernhard Schölkopf,et al.  A Kernel Two-Sample Test , 2012, J. Mach. Learn. Res..

[237]  Gilles Blanchard,et al.  Generalizing from Several Related Classification Tasks to a New Unlabeled Sample , 2011, NIPS.

[238]  Qiang Yang,et al.  A Survey on Transfer Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.

[239]  Trevor Darrell,et al.  Adapting Visual Category Models to New Domains , 2010, ECCV.

[240]  Koby Crammer,et al.  A theory of learning from different domains , 2010, Machine Learning.

[241]  Ivor W. Tsang,et al.  Domain Adaptation via Transfer Component Analysis , 2009, IEEE Transactions on Neural Networks.

[242]  Neil D. Lawrence,et al.  Dataset Shift in Machine Learning , 2009 .

[243]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[244]  Max A. Little,et al.  Suitability of Dysphonia Measurements for Telemonitoring of Parkinson's Disease , 2008, IEEE Transactions on Biomedical Engineering.

[245]  R. Brinkman,et al.  High-content flow cytometry and temporal data analysis for defining a cellular signature of graft-versus-host disease. , 2007, Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation.

[246]  Koby Crammer,et al.  Analysis of Representations for Domain Adaptation , 2006, NIPS.

[247]  John Blitzer,et al.  Domain Adaptation with Structural Correspondence Learning , 2006, EMNLP.

[248]  Ricardo Vilalta,et al.  A Perspective View and Survey of Meta-Learning , 2002, Artificial Intelligence Review.

[249]  H. J. Mclaughlin,et al.  Learn , 2002 .

[250]  Rich Caruana,et al.  Multitask Learning , 1997, Machine Learning.

[251]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[252]  Yann LeCun,et al.  Measuring the VC-Dimension of a Learning Machine , 1994, Neural Computation.

[253]  Ronghang Zhu,et al.  CrossMatch: Cross-Classifier Consistency Regularization for Open-Set Single Domain Generalization , 2022, ICLR.

[254]  Yinghuan Shi,et al.  Unsupervised Domain Generalization for Person Re-identification: A Domain-specific Adaptive Framework , 2021, ArXiv.

[255]  Rixin Wang,et al.  Deep Domain Generalization Combining A Priori Diagnosis Knowledge Toward Cross-Domain Fault Diagnosis of Rolling Bearing , 2021, IEEE Transactions on Instrumentation and Measurement.

[256]  Di Xie,et al.  Semi-Supervised Domain Generalization in Real World: New Benchmark and Strong Baseline , 2021, ArXiv.

[257]  Tie-Yan Liu,et al.  Recovering Latent Causal Factor for Generalization to Distributional Shifts , 2021, NeurIPS.

[258]  Yong Xia,et al.  Domain and Content Adaptive Convolution for Domain Generalization in Medical Image Segmentation , 2021, ArXiv.

[259]  Yusuke Iwasawa,et al.  Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization , 2021, NeurIPS.

[260]  Karthik Nandakumar,et al.  Dynamically Decoding Source Domain Knowledge For Unseen Domain Generalization , 2021, ArXiv.

[261]  Tao Xiang,et al.  Domain Generalization in Vision: A Survey , 2021 .

[262]  Just Train Twice: Improving Group Robustness without Training Group Information , 2021 .

[263]  Tongliang Liu,et al.  Domain Generalization via Entropy Regularization , 2020, NeurIPS.

[264]  Adriana Kovashka,et al.  Domain Generalization Using Shape Representation , 2020, ECCV Workshops.

[265]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[266]  Jason Yosinski,et al.  R X R X 1: A N IMAGE SET FOR CELLULAR MORPHOLOGICAL VARIATION ACROSS MANY EXPERIMENTAL BATCHES , 2019 .

[267]  Yun Fu,et al.  Deep Domain Generalization With Structured Low-Rank Constraint , 2018, IEEE Transactions on Image Processing.

[268]  Yun Fu,et al.  Deep Domain Generalization With Structured Low-Rank Constraint. , 2018, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society.

[269]  R. Hecht-Nielsen,et al.  Neurocomputing , 1990, NATO ASI Series.

[270]  Timothy M. Hospedales,et al.  Learning to Generalize: Meta-Learning for Domain Generalization , 2017, AAAI.

[271]  Timothy M. Hospedales,et al.  Learning to Generate Novel Domains for Domain Generalization , 2020, ECCV.

[272]  X. ∈A Exploiting Domain-Specific Features to Enhance Domain Generalization , 2022 .