Introduction to spiking neural networks: Information processing, learning and applications.

The concept that neural information is encoded in the firing rate of neurons has been the dominant paradigm in neurobiology for many years. This paradigm has also been adopted by the theory of artificial neural networks. Recent physiological experiments demonstrate, however, that in many parts of the nervous system, neural code is founded on the timing of individual action potentials. This finding has given rise to the emergence of a new class of neural models, called spiking neural networks. In this paper we summarize basic properties of spiking neurons and spiking networks. Our focus is, specifically, on models of spike-based information coding, synaptic plasticity and learning. We also survey real-life applications of spiking models. The paper is meant to be an introduction to spiking neural networks for scientists from various disciplines interested in spike-based neural processing.

[1]  Dong-Soo Kwon,et al.  Synaptic plasticity model of a spiking neural network for reinforcement learning , 2008, Neurocomputing.

[2]  Ammar Belatreche,et al.  Advances in Design and Application of Spiking Neural Networks , 2006, Soft Comput..

[3]  John K. Chapin,et al.  Neural prostheses for restoration of sensory and motor function , 2000 .

[4]  F. Ponulak ReSuMe-New Supervised Learning Method for Spiking Neural Networks , 2005 .

[5]  Ezequiel A. Di Paolo,et al.  Spike-Timing Dependent Plasticity for Evolved Robots , 2002, Adapt. Behav..

[6]  Chen K. Tham,et al.  Reinforcement learning of multiple tasks using a hierarchical CMAC architecture , 1995, Robotics Auton. Syst..

[7]  Manuel Samuelides,et al.  Sparse image coding using an asynchronous spiking neural network , 2002, ESANN.

[8]  W. Singer,et al.  Long-range synchronization of oscillatory light responses in the cat retina and lateral geniculate nucleus , 1996, Nature.

[9]  C. Malsburg Nervous Structures with Dynamical Links , 1985 .

[10]  R. Malenka,et al.  Synaptic Plasticity: Multiple Forms, Functions, and Mechanisms , 2008, Neuropsychopharmacology.

[11]  Ammar Belatreche,et al.  A Method for Supervised Training of Spiking Neural Networks , 2003 .

[12]  Wolfgang Maass,et al.  Movement Generation with Circuits of Spiking Neurons , 2005, Neural Computation.

[13]  E. Izhikevich Resonance and selective communication via bursts in neurons having subthreshold oscillations. , 2002, Bio Systems.

[14]  Wulfram Gerstner,et al.  SPIKING NEURON MODELS Single Neurons , Populations , Plasticity , 2002 .

[15]  A. Aertsen,et al.  Spiking activity propagation in neuronal networks: reconciling different perspectives on neural coding , 2010, Nature Reviews Neuroscience.

[16]  Terrence J. Sejnowski,et al.  Synaptic Learning Rules and Sparse Coding in a Model Sensory System , 2008, PLoS Comput. Biol..

[17]  Masao Ito Control of mental activities by internal models in the cerebellum , 2008, Nature Reviews Neuroscience.

[18]  K L Magleby,et al.  Long term changes in augmentation, potentiation, and depression of transmitter release as a function of repeated synaptic activity at the frog neuromuscular junction. , 1976, The Journal of physiology.

[19]  Shigeru Tanaka,et al.  A spiking network model for passage-of-time representation in the cerebellum , 2007, The European journal of neuroscience.

[20]  A. Georgopoulos On reaching. , 1986, Annual review of neuroscience.

[21]  Wolfgang Maass,et al.  Networks of Spiking Neurons: The Third Generation of Neural Network Models , 1996, Electron. Colloquium Comput. Complex..

[22]  Amine Bermak,et al.  Spike Latency Coding in Biologically Inspired Microelectronic Nose , 2011, IEEE Transactions on Biomedical Circuits and Systems.

[23]  G. Edelman,et al.  Large-scale model of mammalian thalamocortical systems , 2008, Proceedings of the National Academy of Sciences.

[24]  E. Izhikevich Solving the distal reward problem through linkage of STDP and dopamine signaling , 2007, BMC Neuroscience.

[25]  Wofgang Maas,et al.  Networks of spiking neurons: the third generation of neural network models , 1997 .

[26]  Gasper Tkacik,et al.  Optimal population coding by noisy spiking neurons , 2010, Proceedings of the National Academy of Sciences.

[27]  Henry Markram,et al.  Perspectives of the high-dimensional dynamics of neural microcircuits from the point of view of low-dimensional readouts , 2003, Complex..

[28]  J. J. Hopfield,et al.  Pattern recognition computation using action potential timing for stimulus representation , 1995, Nature.

[29]  Sander M. Bohte,et al.  Unsupervised clustering with spiking neurons by sparse temporal coding and multilayer RBF networks , 2002, IEEE Trans. Neural Networks.

[30]  Michael T. Rosenstein,et al.  Supervised Actor‐Critic Reinforcement Learning , 2012 .

[31]  D. Marr A theory of cerebellar cortex , 1969, The Journal of physiology.

[32]  Peter Ford Dominey,et al.  Neural network processing of natural language: I. Sensitivity to serial, temporal and abstract structure of language in the infant , 2000 .

[33]  David M. Lovinger,et al.  Neurotransmitter roles in synaptic modulation, plasticity and learning in the dorsal striatum , 2010, Neuropharmacology.

[34]  Botond Szatmáry,et al.  Spike-Timing Theory of Working Memory , 2010, PLoS Comput. Biol..

[35]  Andrzej Kasiński,et al.  Comparison of supervised learning methods for spike time coding in spiking neural networks , 2006 .

[36]  Risto Miikkulainen,et al.  A Self-Organizing Neural Network for Contour Integration through Synchronized Firing , 2000, AAAI/IAAI.

[37]  Xiao-Jing Wang,et al.  Synaptic computation underlying probabilistic inference , 2010, Nature Neuroscience.

[38]  Masao Ito Mechanisms of motor learning in the cerebellum 1 1 Published on the World Wide Web on 24 November 2000. , 2000, Brain Research.

[39]  Erik D. Lumer,et al.  Effects of Spike Timing on Winner-Take-All Competition in Model Cortical Circuits , 2000, Neural Computation.

[40]  D. Wolpert,et al.  Internal models in the cerebellum , 1998, Trends in Cognitive Sciences.

[41]  Mitsuo Kawato,et al.  A computational model of four regions of the cerebellum based on feedback-error learning , 2004, Biological Cybernetics.

[42]  E. Capaldi,et al.  The organization of behavior. , 1992, Journal of applied behavior analysis.

[43]  P. Alstrøm,et al.  Characterization of reliability of spike timing in spinal interneurons during oscillating inputs. , 2001, Journal of neurophysiology.

[44]  Yutaka Hirata,et al.  Computer Simulation of Vestibuloocular Reflex Motor Learning Using a Realistic Cerebellar Cortical Neuronal Network Model , 2007, ICONIP.

[45]  E. Hugues,et al.  Stereo-olfaction with a sniffing neuromorphic robot using spiking neurons , 2002 .

[46]  M. Farries,et al.  Reinforcement learning with modulated spike timing dependent synaptic plasticity. , 2007, Journal of neurophysiology.

[47]  Pierre Kornprobst,et al.  Action Recognition Using a Bio-Inspired Feedforward Spiking Network , 2009, International Journal of Computer Vision.

[48]  Nicholas T. Carnevale,et al.  ModelDB: A Database to Support Computational Neuroscience , 2004, Journal of Computational Neuroscience.

[49]  B. Schrauwen,et al.  Isolated word recognition with the Liquid State Machine: a case study , 2005, Inf. Process. Lett..

[50]  Herbert Jaeger,et al.  Reservoir computing approaches to recurrent neural network training , 2009, Comput. Sci. Rev..

[51]  Masao Ito Bases and implications of learning in the cerebellum--adaptive control and internal model mechanism. , 2005, Progress in brain research.

[52]  S. Schuetze The discovery of the action potential , 1983, Trends in Neurosciences.

[53]  T Natschläger,et al.  Spatial and temporal pattern analysis via spiking neurons. , 1998, Network.

[54]  G. Laurent Dynamical representation of odors by oscillating and evolving neural assemblies , 1996, Trends in Neurosciences.

[55]  J J Hopfield,et al.  What is a moment? "Cortical" sensory integration over a brief interval. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Daniel J. Amit,et al.  Spike-Driven Synaptic Dynamics Generating Working Memory States , 2003, Neural Computation.

[57]  S. Udin The role of visual experience in the formation of binocular projections in frogs , 1985, Cellular and Molecular Neurobiology.

[58]  Benjamin Schrauwen,et al.  Improving SpikeProp: Enhancements to An Error-Backpropagation Rule for Spiking Neural Networks , 2004 .

[59]  L. Pinneo On noise in the nervous system. , 1966, Psychological review.

[60]  G D Lewen,et al.  Reproducibility and Variability in Neural Spike Trains , 1997, Science.

[61]  Thomas A. Cleland,et al.  Decorrelation of Odor Representations via Spike Timing-Dependent Plasticity , 2010, Front. Comput. Neurosci..

[62]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[63]  Kenji Doya,et al.  What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? , 1999, Neural Networks.

[64]  M Abeles,et al.  Synchronization in neuronal transmission and its importance for information processing. , 1994, Progress in brain research.

[65]  Patrick van der Smagt,et al.  Introduction to neural networks , 1995, The Lancet.

[66]  T. Sejnowski,et al.  Regulation of spike timing in visual cortical circuits , 2008, Nature Reviews Neuroscience.

[67]  Jacques Sougné,et al.  A Learning Algorithm for Synfire Chains , 2000, NCPW.

[68]  R. Lestienne Spike timing, synchronization and information processing on the sensory side of the central nervous system , 2001, Progress in Neurobiology.

[69]  J J Hopfield,et al.  What is a moment? Transient synchrony as a collective mechanism for spatiotemporal integration. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[70]  B. Widrow,et al.  Generalization and information storage in network of adaline 'neurons' , 1962 .

[71]  Terrence J. Sejnowski,et al.  Unsupervised Learning , 2018, Encyclopedia of GIS.

[72]  Alireza Sadeghian,et al.  A bidirectional associative memory based on cortical spiking neurons using temporal coding , 2010, The 2010 International Joint Conference on Neural Networks (IJCNN).

[73]  E. Adrian,et al.  The impulses produced by sensory nerve‐endings , 1926 .

[74]  E. Fetz,et al.  Operantly conditioned patterns on precentral unit activity and correlated responses in adjacent cells and contralateral muscles. , 1973, Journal of neurophysiology.

[75]  Michael J. Berry,et al.  The structure and precision of retinal spike trains. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[76]  Ezequiel A. Di Paolo,et al.  Evolving spike-timing-dependent plasticity for single-trial learning in robots , 2003 .

[77]  Andrzej Kasiński,et al.  Generalization Properties of SNN Trained with ReSuMe , 2006 .

[78]  Raúl Rojas,et al.  Neural Networks - A Systematic Introduction , 1996 .

[79]  Jacques Gautrais,et al.  Rapid Visual Processing using Spike Asynchrony , 1996, NIPS.

[80]  W. Singer,et al.  Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties , 1989, Nature.

[81]  C Sergio Espinoza,et al.  Principles of neural sciences , 2012 .

[82]  Hojjat Adeli,et al.  A new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detection , 2009, Neural Networks.

[83]  Sander M. Bohte,et al.  Error-backpropagation in temporally encoded networks of spiking neurons , 2000, Neurocomputing.

[84]  D. J. Newman,et al.  UCI Repository of Machine Learning Database , 1998 .

[85]  Rufin van Rullen,et al.  Rate Coding Versus Temporal Order Coding: What the Retinal Ganglion Cells Tell the Visual Cortex , 2001, Neural Computation.

[86]  J. Lisman,et al.  D1/D5 Dopamine Receptor Activation Increases the Magnitude of Early Long-Term Potentiation at CA1 Hippocampal Synapses , 1996, The Journal of Neuroscience.

[87]  Peter König,et al.  Learning sensory maps with real-world stimuli in real time using a biophysically realistic learning rule , 2002, IEEE Trans. Neural Networks.

[88]  G. Bi,et al.  Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type , 1998, The Journal of Neuroscience.

[89]  J.J. Steil,et al.  Backpropagation-decorrelation: online recurrent learning with O(N) complexity , 2004, 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541).

[90]  Manuel Mazo,et al.  E.O.G. guidance of a weelchair using spiking neural networks , 2000, ESANN.

[91]  D. Georgescauld Local Cortical Circuits, An Electrophysiological Study , 1983 .

[92]  Eduardo Ros,et al.  A real-time spiking cerebellum model for learning robot control , 2008, Biosyst..

[93]  R VanRullen,et al.  Is it a Bird? Is it a Plane? Ultra-Rapid Visual Categorisation of Natural and Artifactual Objects , 2001, Perception.

[94]  Wulfram Gerstner,et al.  Mathematical formulations of Hebbian learning , 2002, Biological Cybernetics.

[95]  Benjamin Schrauwen,et al.  Backpropagation for Population-Temporal Coded Spiking Neural Networks , 2006, The 2006 IEEE International Joint Conference on Neural Network Proceedings.

[96]  Xiao-Jing Wang Decision Making in Recurrent Neuronal Circuits , 2008, Neuron.

[97]  Carlos D. Brody,et al.  Simple Networks for Spike-Timing-Based Computation, with Application to Olfactory Processing , 2003, Neuron.

[98]  W. Schultz Getting Formal with Dopamine and Reward , 2002, Neuron.

[99]  Benjamin Schrauwen,et al.  An overview of reservoir computing: theory, applications and implementations , 2007, ESANN.

[100]  T. Sejnowski Statistical constraints on synaptic plasticity. , 1977, Journal of theoretical biology.

[101]  Ran Ginosar,et al.  Adaptive Cardiac Resynchronization Therapy Device Based on Spiking Neurons Architecture and Reinforcement Learning Scheme , 2007, IEEE Transactions on Neural Networks.

[102]  E. Knudsen Supervised learning in the brain , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[103]  Wulfram Gerstner,et al.  A neuronal learning rule for sub-millisecond temporal coding , 1996, Nature.

[104]  M. Kawato,et al.  Inverse-dynamics model eye movement control by Purkinje cells in the cerebellum , 1993, Nature.

[105]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[106]  Neil Davey,et al.  The Effect of Different Forms of Synaptic Plasticity on Pattern Recognition in the Cerebellar Cortex , 2009, ICANNGA.

[107]  R. Johansson,et al.  First spikes in ensembles of human tactile afferents code complex spatial fingertip events , 2004, Nature Neuroscience.

[108]  W. Schultz,et al.  Responses of monkey dopamine neurons during learning of behavioral reactions. , 1992, Journal of neurophysiology.

[109]  Ad Aertsen,et al.  Stable propagation of synchronous spiking in cortical neural networks , 1999, Nature.

[110]  Sethu Vijayakumar,et al.  Information about Complex Fingertip Parameters in Individual Human Tactile Afferent Neurons , 2009, The Journal of Neuroscience.

[111]  M. Baudry Synaptic Plasticity and Learning and Memory: 15 Years of Progress , 1998, Neurobiology of Learning and Memory.

[112]  Cornelius Glackin,et al.  Implementing Fuzzy Reasoning on a Spiking Neural Network , 2008, ICANN.

[113]  Eytan Domany,et al.  Models of Neural Networks I , 1991 .

[114]  Ruedi Stoop,et al.  Hebbian Self-Organizing Integrate-and-Fire Networks for Data Clustering , 2010, Neural Computation.

[115]  Héctor Mesa,et al.  Imprecise correlated activity in self-organizing maps of spiking neurons , 2008, Neural Networks.

[116]  R. DeCharms,et al.  Information coding in the cortex by independent or coordinated populations. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[117]  A. J. Mulder,et al.  Artificial-reflex stimulation for FES-induced standing with minimum quadriceps force , 1990, Medical and Biological Engineering and Computing.

[118]  Razvan V. Florian,et al.  Reinforcement Learning Through Modulation of Spike-Timing-Dependent Synaptic Plasticity , 2007, Neural Computation.

[119]  Razvan V. Florian A reinforcement learning algorithm for spiking neural networks , 2005, Seventh International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC'05).

[120]  Jianfeng Feng,et al.  Computational neuroscience , 1986, Behavioral and Brain Sciences.

[121]  Dominique Martinez,et al.  A spiking neural network model of the locust antennal lobe: Towards neuromorphic electronic noses inspired from insect olfaction , 2004 .

[122]  E I Knudsen,et al.  Visual instruction of the neural map of auditory space in the developing optic tectum. , 1991, Science.

[123]  H. Sompolinsky,et al.  Time-Warp–Invariant Neuronal Processing , 2009, PLoS biology.

[124]  Geoffrey E. Hinton,et al.  Unsupervised learning : foundations of neural computation , 1999 .

[125]  John O'Keefe,et al.  Hippocampus, theta, and spatial memory , 1993, Current Opinion in Neurobiology.

[126]  R. Eckhorn,et al.  Coherent oscillations: A mechanism of feature linking in the visual cortex? , 1988, Biological Cybernetics.

[127]  John J Hopfield,et al.  Neurodynamics of mental exploration , 2009, Proceedings of the National Academy of Sciences.

[128]  D. Bodznick,et al.  Error-driven motor learning in fish. , 2002, The Biological bulletin.

[129]  Wolfgang Maass,et al.  Paradigms for Computing with Spiking Neurons , 2002 .

[130]  Christof Koch,et al.  Temporal Precision of Spike Trains in Extrastriate Cortex of the Behaving Macaque Monkey , 1999, Neural Computation.

[131]  M. V. Rossum,et al.  Quantitative investigations of electrical nerve excitation treated as polarization , 2007, Biological Cybernetics.

[132]  E. Thorndike “Animal Intelligence” , 1898, Nature.

[133]  J. Desce,et al.  Dopamine facilitates long-term depression of glutamatergic transmission in rat prefrontal cortex , 1998, Neuroscience.

[134]  W. Singer,et al.  Distributed Fading Memory for Stimulus Properties in the Primary Visual Cortex , 2009, PLoS biology.

[135]  Wulfram Gerstner,et al.  Spike-Based Reinforcement Learning in Continuous State and Action Space: When Policy Gradient Methods Fail , 2009, PLoS Comput. Biol..

[136]  Robert A. Legenstein,et al.  What Can a Neuron Learn with Spike-Timing-Dependent Plasticity? , 2005, Neural Computation.

[137]  P. Brodal The Central Nervous System , 1992 .

[138]  Thomas Wennekers,et al.  Associative memory in networks of spiking neurons , 2001, Neural Networks.

[139]  Erik De Schutter,et al.  Frontiers in Computational Neuroscience Calcium, Synaptic Plasticity and Intrinsic Homeostasis in Purkinje Neuron Models Materials and Methods Original Pc Model , 2022 .

[140]  Terrence J. Sejnowski,et al.  The Hebb Rule for Synaptic Plasticity: Algorithms and Implementations , 1989 .

[141]  Chuandong Li,et al.  Neural Information Processing , 2012, Lecture Notes in Computer Science.

[142]  Ricardo Gutierrez-Osuna,et al.  Chemosensory Processing in a Spiking Model of the Olfactory Bulb: Chemotopic Convergence and Center Surround Inhibition , 2004, NIPS.

[143]  W. Gerstner,et al.  Coherence and incoherence in a globally coupled ensemble of pulse-emitting units. , 1993, Physical review letters.

[144]  Henry Markram,et al.  Computational models for generic cortical microcircuits , 2004 .

[145]  Henry Markram,et al.  A New Approach towards Vision Suggested by Biologically Realistic Neural Microcircuit Models , 2002, Biologically Motivated Computer Vision.

[146]  Sander M. Bohte,et al.  Applications of spiking neural networks , 2005, Inf. Process. Lett..

[147]  Arnaud Delorme,et al.  Spike-based strategies for rapid processing , 2001, Neural Networks.

[148]  Robert A. Legenstein,et al.  Spiking Neurons Can Learn to Solve Information Bottleneck Problems and Extract Independent Components , 2009, Neural Computation.

[149]  M. Merzenich,et al.  Cortical remodelling induced by activity of ventral tegmental dopamine neurons , 2001, Nature.

[150]  Peter Tiño,et al.  Learning Beyond Finite Memory in Recurrent Networks of Spiking Neurons , 2005, Neural Computation.

[151]  R. M. Gaze,et al.  Binocular interaction in the formation of specific intertectal neuronal connexions , 1970, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[152]  Hélène Paugam-Moisy Spiking Neuron Networks A survey , 2006 .

[153]  M. Kawato,et al.  The cerebellum and VOR/OKR learning models , 1992, Trends in Neurosciences.

[154]  Sander M. Bohte,et al.  The evidence for neural information processing with precise spike-times: A survey , 2004, Natural Computing.

[155]  R. Stein Some models of neuronal variability. , 1967, Biophysical journal.

[156]  Hieu Tat Nguyen,et al.  A gradient descent rule for spiking neurons emitting multiple spikes , 2005, Inf. Process. Lett..

[157]  Raul C. Mureşan Complex Object Recognition Using a Biologically Plausible Neural Model , 2002 .

[158]  Peter Dayan,et al.  Fast Population Coding , 2007, Neural Computation.

[159]  F. Ponulak,et al.  Adaptive Central Pattern Generator based on Spiking Neural Networks , 2006 .

[160]  M. Keating,et al.  Plasticity in a central nervous pathway in Xenopus: Anatomical changes in the isthmotectal projection after larval eye rotation , 1981, The Journal of comparative neurology.

[161]  L. Abbott,et al.  Synaptic plasticity: taming the beast , 2000, Nature Neuroscience.

[162]  J J Hopfield,et al.  Rapid local synchronization of action potentials: toward computation with coupled integrate-and-fire neurons. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[163]  Rudolf Jakša,et al.  Backpropagation in Supervised and Reinforcement Learning for Mobile Robot Control ∗ , 2022 .

[164]  S. Thorpe,et al.  Spike times make sense , 2005, Trends in Neurosciences.

[165]  Amir F. Atiya,et al.  New results on recurrent network training: unifying the algorithms and accelerating convergence , 2000, IEEE Trans. Neural Networks Learn. Syst..

[166]  J. Lisman,et al.  Hippocampal CA3 region predicts memory sequences: accounting for the phase precession of place cells. , 1996, Learning & memory.

[167]  G. Stent A physiological mechanism for Hebb's postulate of learning. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[168]  Robert A. Legenstein,et al.  A Learning Theory for Reward-Modulated Spike-Timing-Dependent Plasticity with Application to Biofeedback , 2008, PLoS Comput. Biol..

[169]  Ron Meir,et al.  Reinforcement Learning, Spike-Time-Dependent Plasticity, and the BCM Rule , 2007, Neural Computation.

[170]  Kelvin E. Jones,et al.  Neuronal variability: noise or part of the signal? , 2005, Nature Reviews Neuroscience.

[171]  Jean-Pascal Pfister,et al.  Optimal Spike-Timing-Dependent Plasticity for Precise Action Potential Firing in Supervised Learning , 2005, Neural Computation.

[172]  R. Traub,et al.  Neuronal networks for induced ‘40 Hz’ rhythms , 1996, Trends in Neurosciences.

[173]  W. Newsome,et al.  The Variable Discharge of Cortical Neurons: Implications for Connectivity, Computation, and Information Coding , 1998, The Journal of Neuroscience.

[174]  Gregory J. Gerling,et al.  Using force sensors and neural models to encode tactile stimuli as spike-based responses , 2010, 2010 IEEE Haptics Symposium.

[175]  F. Golla The Central Nervous System , 1960, Nature.

[176]  Lukasz A. Kurgan,et al.  Recognition of Partially Occluded and Rotated Images With a Network of Spiking Neurons , 2010, IEEE Transactions on Neural Networks.

[177]  Andreas Knoblauch,et al.  Synchronization and pattern separation in spiking associative memories and visual cortical areas , 2004 .

[178]  E. De Schutter,et al.  Patterns and pauses in Purkinje cell simple spike trains: experiments, modeling and theory , 2009, Neuroscience.

[179]  Henry Markram,et al.  Real-Time Computing Without Stable States: A New Framework for Neural Computation Based on Perturbations , 2002, Neural Computation.

[180]  Andrzej J. Kasinski,et al.  Supervised Learning in Spiking Neural Networks with ReSuMe: Sequence Learning, Classification, and Spike Shifting , 2010, Neural Computation.

[181]  T. Sinkjær,et al.  Control of Movement for the Physically Disabled , 2000 .

[182]  Jochen Triesch,et al.  Independent Component Analysis in Spiking Neurons , 2010, PLoS Comput. Biol..

[183]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[184]  Wulfram Gerstner,et al.  An online Hebbian learning rule that performs independent component analysis , 2008, BMC Neuroscience.

[185]  Ian H. Witten,et al.  An Adaptive Optimal Controller for Discrete-Time Markov Environments , 1977, Inf. Control..

[186]  Frank C. Hoppensteadt,et al.  Bursts as a unit of neural information: selective communication via resonance , 2003, Trends in Neurosciences.

[187]  A. Cassidy,et al.  A biologically inspired tactile sensor array utilizing phase-based computation , 2006, 2006 IEEE Biomedical Circuits and Systems Conference.

[188]  Simon J. Thorpe,et al.  Sparse spike coding in an asynchronous feed-forward multi-layer neural network using matching pursuit , 2004, Neurocomputing.

[189]  B. Matthews The response of a single end organ , 1931, The Journal of physiology.

[190]  Jianguo Xin,et al.  Supervised learning with spiking neural networks , 2001, IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222).

[191]  Henry Markram,et al.  A Model for Real-Time Computation in Generic Neural Microcircuits , 2002, NIPS.

[192]  Berthold Ruf,et al.  Online Clustering with Spiking Neurons Using Temporal Coding , 1998 .

[193]  H. Sompolinsky,et al.  The tempotron: a neuron that learns spike timing–based decisions , 2006, Nature Neuroscience.

[194]  Anders Krogh,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[195]  E. Vaadia,et al.  Synchronization in neuronal transmission and its importance for information processing. , 1994 .

[196]  Michael Schmitt,et al.  Self-organization of spiking neurons using action potential timing , 1998, IEEE Trans. Neural Networks.

[197]  Kimitaka Nakazawa,et al.  Facilitation of the soleus stretch reflex induced by electrical excitation of plantar cutaneous afferents located around the heel , 2007, Neuroscience Letters.

[198]  Wolfgang Maass,et al.  Lower Bounds for the Computational Power of Networks of Spiking Neurons , 1996, Neural Computation.

[199]  M. Bennett,et al.  The early history of the synapse: from plato to sherrington , 1999, Brain Research Bulletin.

[200]  Henry Markram,et al.  Slow oscillations in neural networks with facilitating synapses , 2008, Journal of Computational Neuroscience.

[201]  M. Mauk,et al.  Simulations of Cerebellar Motor Learning: Computational Analysis of Plasticity at the Mossy Fiber to Deep Nucleus Synapse , 1999, The Journal of Neuroscience.

[202]  William Bialek,et al.  Spikes: Exploring the Neural Code , 1996 .

[203]  Jianhong Wu,et al.  Multistability in Spiking Neuron Models of Delayed Recurrent Inhibitory Loops , 2007, Neural Computation.

[204]  E. Adrian,et al.  The impulses produced by sensory nerve-endings: Part II. The response of a Single End-Organ. , 2006, The Journal of physiology.

[205]  Rufin VanRullen,et al.  Temporal codes and sparse representations: A key to understanding rapid processing in the visual system , 2004, Journal of Physiology-Paris.

[206]  Robert C. Liu,et al.  Variability and information in a neural code of the cat lateral geniculate nucleus. , 2001, Journal of neurophysiology.

[207]  Simon J. Thorpe,et al.  Spike arrival times: A highly efficient coding scheme for neural networks , 1990 .

[208]  Seong-Whan Lee,et al.  Biologically Motivated Computer Vision , 2002, Lecture Notes in Computer Science.

[209]  D. A. Baxter,et al.  Operant Reward Learning in Aplysia: Neuronal Correlates and Mechanisms , 2002, Science.

[210]  M. Tsodyks,et al.  Synaptic Theory of Working Memory , 2008, Science.

[211]  W. Singer,et al.  Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[212]  Megan R. Carey,et al.  Instructive signals for motor learning from visual cortical area MT , 2005, Nature Neuroscience.

[213]  deCharms Rc,et al.  Information coding in the cortex by independent or coordinated populations. , 1998 .

[214]  Krzysztof J. Cios,et al.  Advances in applications of spiking neuron networks , 2000, SPIE Defense + Commercial Sensing.

[215]  P. Kornprobst,et al.  Could early visual processes be sufficient to label motions? , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..

[216]  H. Markram,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997, Science.

[217]  J. Albus A Theory of Cerebellar Function , 1971 .

[218]  Daniel M. Wolpert,et al.  Forward Models for Physiological Motor Control , 1996, Neural Networks.

[219]  Karla Conn Supervised Reinforcement Learning: Application to an Embodied Mobile Robot , 2007 .

[220]  F. Ponulak,et al.  ReSuMe learning method for Spiking Neural Networks dedicated to neuroprostheses control , 2006 .

[221]  P. Verschure,et al.  The cerebellum in action: a simulation and robotics study , 2002, The European journal of neuroscience.

[222]  Henrik Jörntell,et al.  Synaptic Memories Upside Down: Bidirectional Plasticity at Cerebellar Parallel Fiber-Purkinje Cell Synapses , 2006, Neuron.

[223]  Alexander Borst,et al.  Information theory and neural coding , 1999, Nature Neuroscience.

[224]  W. T. Thach Motor Learning and Synaptic Plasticity in the Cerebellum: On the specific role of the cerebellum in motor learning and cognition: Clues from PET activation and lesion studies in man , 1997 .

[225]  Wulfram Gerstner,et al.  Associative memory in a network of ‘spiking’ neurons , 1992 .

[226]  Wolf Singer,et al.  Neuronal Synchrony: A Versatile Code for the Definition of Relations? , 1999, Neuron.

[227]  T. Jay,et al.  Essential Role of D1 But Not D2 Receptors in the NMDA Receptor-Dependent Long-Term Potentiation at Hippocampal-Prefrontal Cortex Synapses In Vivo , 2000, The Journal of Neuroscience.

[228]  K. Pawelzik,et al.  Alternating oscillatory and stochastic dynamics in a model for a neuronal assembly , 1993 .

[229]  Péter Érdi,et al.  Modeling hippocampal theta oscillation: Applications in neuropharmacology and robot navigation , 2006, Int. J. Intell. Syst..

[230]  A. Pérez-Villalba Rhythms of the Brain, G. Buzsáki. Oxford University Press, Madison Avenue, New York (2006), Price: GB £42.00, p. 448, ISBN: 0-19-530106-4 , 2008 .

[231]  Wolfgang Maass,et al.  Associative Memory with Networks of Spiking Neurons in Temporal Coding , 1998 .

[232]  Dezhe Z Jin,et al.  Fast computation with spikes in a recurrent neural network. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.