Resistance drift in phase change memory

This paper discusses the major reliability issue in MLC PCM, namely time dependent resistance drift in amorphous chalcogenide materials. Starting from experimental observations, this paper presents a complete physical picture for structural relaxation (SR), which is considered to be the underlying mechanism for resistance drift. In particularly, various physics models and quantum molecular dynamics simulation are presented to reveal the interrelationship between atomic structure and electrical properties of amorphous chalcogenide materials. The paper provides insights to develop mitigation techniques including material engineering and various design techniques, etc. to ensure reliable MLC operations.

[1]  Synthetic theory of Poole and Poole-Frenkel (PF) effects , 1991 .

[2]  Jacobson,et al.  Structural relaxation and defect annihilation in pure amorphous silicon. , 1991, Physical review. B, Condensed matter.

[3]  K. Kitagawa,et al.  On the determination of the crystallization activation energy of metallic glasses , 2000 .

[4]  A. ADoefaa,et al.  ? ? ? ? f ? ? ? ? ? , 2003 .

[5]  Matthias Wuttig,et al.  Viscosity and elastic constants of thin films of amorphous Te alloys used for optical data storage , 2003 .

[6]  S. Lai,et al.  Current status of the phase change memory and its future , 2003, IEEE International Electron Devices Meeting 2003.

[7]  J. Tominaga,et al.  Understanding the phase-change mechanism of rewritable optical media , 2004, Nature materials.

[8]  A. Pirovano,et al.  Low-field amorphous state resistance and threshold voltage drift in chalcogenide materials , 2004, IEEE Transactions on Electron Devices.

[9]  Eric Larose,et al.  A Physical Interpretation of , 2005 .

[10]  D. Ielmini,et al.  Physical interpretation, modeling and impact on phase change memory (PCM) reliability of resistance drift due to chalcogenide structural relaxation , 2007, 2007 IEEE International Electron Devices Meeting.

[11]  Daniele Ielmini,et al.  Analytical model for subthreshold conduction and threshold switching in chalcogenide-based memory devices , 2007 .

[12]  Daniele Ielmini,et al.  Evidence for trap-limited transport in the subthreshold conduction regime of chalcogenide glasses , 2007 .

[13]  I. Karpov,et al.  Fundamental drift of parameters in chalcogenide phase change memory , 2007 .

[14]  A. Pirovano,et al.  Statistical analysis and modeling of programming and retention in PCM arrays , 2007, 2007 IEEE International Electron Devices Meeting.

[15]  Winfried W. Wilcke,et al.  Storage-class memory: The next storage system technology , 2008, IBM J. Res. Dev..

[16]  Y.J. Song,et al.  Two-bit cell operation in diode-switch phase change memory cells with 90nm technology , 2008, 2008 Symposium on VLSI Technology.

[17]  Kailash Gopalakrishnan,et al.  Overview of candidate device technologies for storage-class memory , 2008, IBM J. Res. Dev..

[18]  D. Ielmini,et al.  Physical mechanism and temperature acceleration of relaxation effects in phase-change memory cells , 2008, 2008 IEEE International Reliability Physics Symposium.

[19]  D. Ielmini,et al.  Reliability Impact of Chalcogenide-Structure Relaxation in Phase-Change Memory (PCM) Cells—Part II: Physics-Based Modeling , 2009, IEEE Transactions on Electron Devices.

[20]  D. Ielmini,et al.  Distributed-Poole-Frenkel modeling of anomalous resistance scaling and fluctuations in phase-change memory (PCM) devices , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[21]  S. Braga,et al.  Dependence of resistance drift on the amorphous cap size in phase change memory arrays , 2009 .

[22]  D. Ielmini,et al.  Reliability Impact of Chalcogenide-Structure Relaxation in Phase-Change Memory (PCM) Cells—Part I: Experimental Study , 2009, IEEE Transactions on Electron Devices.

[23]  A. Pirovano,et al.  Statistical and scaling behavior of structural relaxation effects in phase-change memory (PCM) devices , 2009, 2009 IEEE International Reliability Physics Symposium.

[24]  Daniele Ielmini,et al.  Statistics of Resistance Drift Due to Structural Relaxation in Phase-Change Memory Arrays , 2010, IEEE Transactions on Electron Devices.

[25]  Wei Xu,et al.  Using time-aware memory sensing to address resistance drift issue in multi-level phase change memory , 2010, 2010 11th International Symposium on Quality Electronic Design (ISQED).

[26]  Yeonwoong Jung,et al.  Extremely low drift of resistance and threshold voltage in amorphous phase change nanowire devices , 2010 .

[27]  Jing Li,et al.  Explore physical origins of resistance drift in phase change memory and its implication for drift-insensitive materials , 2011, 2011 International Electron Devices Meeting.

[28]  Byoungil Lee,et al.  Resistance and Threshold Switching Voltage Drift Behavior in Phase-Change Memory and Their Temperature Dependence at Microsecond Time Scales Studied Using a Micro-Thermal Stage , 2011, IEEE Transactions on Electron Devices.

[29]  Haralampos Pozidis,et al.  Non-resistance-based cell-state metric for phase-change memory , 2011 .