Entorhinal transformations in abstract frames of reference

Knowing how another’s preferences relate to our own is a central aspect of everyday decision-making, yet how the brain performs this transformation is unclear. Here, we ask whether the putative role of the hippocampal–entorhinal system in transforming relative and absolute spatial coordinates during navigation extends to transformations in abstract decision spaces. During functional magnetic resonance imaging (fMRI), subjects learned a stranger’s preference for an everyday activity—relative to one of three personally known individuals—and subsequently decided how the stranger's preference relates to the other two individuals’ preferences. We observed entorhinal/subicular responses to the absolute distance between the ratings of the stranger and the familiar choice options. Notably, entorhinal/subicular signals were sensitive to which familiar individuals were being compared to the stranger. In contrast, striatal signals increased when accurately determining the ordinal position of choice options in relation to the stranger. Paralleling its role in navigation, these data implicate the entorhinal/subicular region in assimilating relatively coded knowledge within abstract metric spaces.

[1]  Christian F. Doeller,et al.  Parallel striatal and hippocampal systems for landmarks and boundaries in spatial memory , 2008, Proceedings of the National Academy of Sciences.

[2]  Russell A. Epstein,et al.  Common Neural Representations for Visually Guided Reorientation and Spatial Imagery , 2016, Cerebral cortex.

[3]  Nikolaus Weiskopf,et al.  Optimal EPI parameters for reduction of susceptibility-induced BOLD sensitivity losses: A whole-brain analysis at 3 T and 1.5 T , 2006, NeuroImage.

[4]  Tobias Navarro Schröder,et al.  Hexadirectional coding of visual space in human entorhinal cortex , 2018, Nature Neuroscience.

[5]  Karl J. Friston,et al.  The Neural Representation of Prospective Choice during Spatial Planning and Decisions , 2017, PLoS biology.

[6]  Diana I. Tamir,et al.  Modeling the Predictive Social Mind , 2018, Trends in Cognitive Sciences.

[7]  Neil Burgess,et al.  Predictions derived from modelling the hippocampal role in navigation , 2000, Biological Cybernetics.

[8]  Kristin M. Scaplen,et al.  Objects and landmarks: Hippocampal place cells respond differently to manipulations of visual cues depending on size, perspective, and experience , 2014, Hippocampus.

[9]  Uri Hasson,et al.  Neural pattern change during encoding of a narrative predicts retrospective duration estimates , 2016, bioRxiv.

[10]  R. Knight,et al.  The Hippocampus and Entorhinal Cortex Encode the Path and Euclidean Distances to Goals during Navigation , 2014, Current Biology.

[11]  J. Mattingley,et al.  Dissociable roles of the hippocampus and parietal cortex in processing of coordinate and categorical spatial information , 2014, Front. Hum. Neurosci..

[12]  B. Postle,et al.  Superior Parietal Cortex Is Critical for the Manipulation of Information in Working Memory , 2009, The Journal of Neuroscience.

[13]  Jean-Luc Anton,et al.  Region of interest analysis using an SPM toolbox , 2010 .

[14]  N. Daw,et al.  Reinforcement Learning and Episodic Memory in Humans and Animals: An Integrative Framework , 2017, Annual review of psychology.

[15]  E. Maguire,et al.  What does the retrosplenial cortex do? , 2009, Nature Reviews Neuroscience.

[16]  Jason P. Mitchell,et al.  of Experimental Psychology : General Anchoring and Adjustment During Social Inferences , 2012 .

[17]  N. Epley,et al.  Putting Adjustment Back in the Anchoring and Adjustment Heuristic: Differential Processing of Self-Generated and Experimenter-Provided Anchors , 2001, Psychological science.

[18]  Christian F. Doeller,et al.  Functional topography of the human entorhinal cortex , 2015, eLife.

[19]  Timothy E. J. Behrens,et al.  Organizing conceptual knowledge in humans with a gridlike code , 2016, Science.

[20]  R U Muller,et al.  Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[21]  J. Swets,et al.  A decision-making theory of visual detection. , 1954, Psychological review.

[22]  D. Hassabis,et al.  A Goal Direction Signal in the Human Entorhinal/Subicular Region , 2015, Current Biology.

[23]  Edvard I. Moser,et al.  Object-vector coding in the medial entorhinal cortex , 2018, bioRxiv.

[24]  Peter Gärdenfors,et al.  Navigating cognition: Spatial codes for human thinking , 2018, Science.

[25]  Christian F. Doeller,et al.  Evidence for grid cells in a human memory network , 2010, Nature.

[26]  Steve W. C. Chang,et al.  Neuronal reference frames for social decisions in primate frontal cortex , 2012, Nature Neuroscience.

[27]  Dmitriy Aronov,et al.  Mapping of a non-spatial dimension by the hippocampal/entorhinal circuit , 2017, Nature.

[28]  Raymond J Dolan,et al.  A map of abstract relational knowledge in the human hippocampal–entorhinal cortex , 2017, eLife.

[29]  T. Hafting,et al.  Microstructure of a spatial map in the entorhinal cortex , 2005, Nature.

[30]  Neurons in Primate Entorhinal Cortex Represent Gaze Position in Multiple Spatial Reference Frames , 2018, The Journal of Neuroscience.

[31]  Howard Eichenbaum,et al.  The Hippocampus as a Cognitive Map … of Social Space , 2015, Neuron.

[32]  W. T. Maddox,et al.  Dissociable Prototype Learning Systems: Evidence from Brain Imaging and Behavior , 2008, The Journal of Neuroscience.

[33]  Flavia Filimon,et al.  Are All Spatial Reference Frames Egocentric? Reinterpreting Evidence for Allocentric, Object-Centered, or World-Centered Reference Frames , 2015, Front. Hum. Neurosci..

[34]  Russell A. Epstein,et al.  Human entorhinal cortex represents visual space using a boundary-anchored grid , 2017, Nature Neuroscience.

[35]  Timothy Edward John Behrens,et al.  Ventromedial Prefrontal and Anterior Cingulate Cortex Adopt Choice and Default Reference Frames during Sequential Multi-Alternative Choice , 2013, The Journal of Neuroscience.

[36]  Michael L. Mack,et al.  Dynamic updating of hippocampal object representations reflects new conceptual knowledge , 2016, Proceedings of the National Academy of Sciences.

[37]  David J. Foster,et al.  Memory and Space: Towards an Understanding of the Cognitive Map , 2015, The Journal of Neuroscience.

[38]  Bruce L. McNaughton,et al.  Path integration and the neural basis of the 'cognitive map' , 2006, Nature Reviews Neuroscience.

[39]  J. O’Keefe,et al.  Space in the brain: how the hippocampal formation supports spatial cognition , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[40]  V. Walsh,et al.  The parietal cortex and the representation of time, space, number and other magnitudes , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[41]  J. O'Keefe,et al.  The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. , 1971, Brain research.

[42]  P. Dayan,et al.  States versus Rewards: Dissociable Neural Prediction Error Signals Underlying Model-Based and Model-Free Reinforcement Learning , 2010, Neuron.

[43]  S. Kosslyn Seeing and imagining in the cerebral hemispheres: a computational approach. , 1987, Psychological review.

[44]  Steve W. C. Chang Coordinate transformation approach to social interactions , 2013, Front. Neurosci..

[45]  Neil Burgess,et al.  Distinct error-correcting and incidental learning of location relative to landmarks and boundaries , 2008, Proceedings of the National Academy of Sciences.

[46]  Jill K. Leutgeb,et al.  Grid and Nongrid Cells in Medial Entorhinal Cortex Represent Spatial Location and Environmental Features with Complementary Coding Schemes , 2017, Neuron.

[47]  Christian F. Doeller,et al.  The Role of Mental Maps in Decision-Making , 2017, Trends in Neurosciences.

[48]  Charlotte N. Boccara,et al.  Grid cells in pre- and parasubiculum , 2010, Nature Neuroscience.

[49]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[50]  J. O’Keefe,et al.  Geometric determinants of the place fields of hippocampal neurons , 1996, Nature.

[51]  C. Ranganath,et al.  Functional subregions of the human entorhinal cortex , 2015, eLife.

[52]  Michael R. Meager,et al.  Hippocampal Contributions to Model-Based Planning and Spatial Memory , 2019, Neuron.

[53]  K. Amunts,et al.  Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps , 2005, Anatomy and Embryology.

[54]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[55]  D. Hassabis,et al.  Computations Underlying Social Hierarchy Learning: Distinct Neural Mechanisms for Updating and Representing Self-Relevant Information , 2016, Neuron.

[56]  Eleanor A Maguire,et al.  The pre/parasubiculum: a hippocampal hub for scene-based cognition? , 2017, Current Opinion in Behavioral Sciences.

[57]  S. Dehaene,et al.  The mental representation of parity and number magnitude. , 1993 .

[58]  J. O’Keefe,et al.  Modeling place fields in terms of the cortical inputs to the hippocampus , 2000, Hippocampus.

[59]  M. Shapiro,et al.  A Map for Social Navigation in the Human Brain , 2015, Neuron.

[60]  S. Dehaene,et al.  THREE PARIETAL CIRCUITS FOR NUMBER PROCESSING , 2003, Cognitive neuropsychology.

[61]  G. Buzsáki,et al.  Memory, navigation and theta rhythm in the hippocampal-entorhinal system , 2013, Nature Neuroscience.

[62]  N. Epley,et al.  Perspective taking as egocentric anchoring and adjustment. , 2004, Journal of personality and social psychology.

[63]  Øyvind Arne Høydal,et al.  Object-vector coding in the medial entorhinal cortex , 2019, Nature.

[64]  Dharshan Kumaran,et al.  The Human Hippocampus: Cognitive Maps or Relational Memory? , 2005, The Journal of Neuroscience.

[65]  D. Kumaran,et al.  The Emergence and Representation of Knowledge about Social and Nonsocial Hierarchies , 2012, Neuron.

[66]  Russell A. Poldrack,et al.  Large-scale automated synthesis of human functional neuroimaging data , 2011, Nature Methods.

[67]  Bradley C. Love,et al.  Building concepts one episode at a time: The hippocampus and concept formation , 2017, Neuroscience Letters.

[68]  Daphna Shohamy,et al.  Value-based decisions involve sequential sampling from memory , 2018, bioRxiv.

[69]  Lila Davachi,et al.  Similarity Breeds Proximity: Pattern Similarity within and across Contexts Is Related to Later Mnemonic Judgments of Temporal Proximity , 2014, Neuron.

[70]  K. Norman,et al.  Reinstated episodic context guides sampling-based decisions for reward , 2017, Nature Neuroscience.

[71]  M. Shadlen,et al.  Decision Making and Sequential Sampling from Memory , 2016, Neuron.

[72]  Hilla Peretz,et al.  Ju n 20 03 Schrödinger ’ s Cat : The rules of engagement , 2003 .

[73]  P. Dayan,et al.  Cortical substrates for exploratory decisions in humans , 2006, Nature.