Impact-Aware Task-Space Quadratic-Programming Control

Generating on-purpose impacts with rigid robots is challenging as they may lead to severe hardware failures due to abrupt changes in the velocities and torques. Without dedicated hardware and controllers, robots typically operate at a near-zero velocity in the vicinity of contacts. We assume knowing how much of impact the hardware can absorb and focus solely on the controller aspects. Hybrid controllers with reset maps provided elegant solutions for given impact tasks. The novelty of our approach is twofold: (i) it uses the task-space inverse dynamics formalism that we extend by seamlessly integrating impact tasks; (ii) it does not require separate models with switches or a reset map to operate the robot undergoing impact tasks. Our main idea lies in integrating post-impact states prediction and impact-aware inequality constraints as part of our existing general-purpose whole-body controller. To achieve such prediction, we formulate task-space impacts and its spreading along the kinematic and potentially arborescent, structure of a floating-base robot with subsequent joint velocity and torque jumps. As a result, the feasible solution set accounts for various constraints due to expected impacts. In a multi-contact situation of under-actuated legged robots subject to multiple impacts, we also enforce the dynamic equilibrium margins. By design, our controller does not require precise knowledge of impact location and timing. We assessed our formalism with the humanoid robot HRP-4, generating maximum contact velocities, neither breaking established contacts nor damaging the hardware.

[1]  Benjamin J. Stephens,et al.  Humanoid push recovery , 2007, 2007 7th IEEE-RAS International Conference on Humanoid Robots.

[2]  Daniel Rixen,et al.  Versatile and robust bipedal walking in unknown environments: real-time collision avoidance and disturbance rejection , 2019, Autonomous Robots.

[3]  Ian R. Manchester,et al.  Stable dynamic walking over uneven terrain , 2011, Int. J. Robotics Res..

[4]  Yoshihiko Nakamura,et al.  Stability of surface contacts for humanoid robots: Closed-form formulae of the Contact Wrench Cone for rectangular support areas , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[5]  Olivier Sigaud,et al.  Task Feasibility Maximization Using Model-Free Policy Search and Model-Based Whole-Body Control , 2020, Frontiers in Robotics and AI.

[6]  Franck Plestan,et al.  Asymptotically stable walking for biped robots: analysis via systems with impulse effects , 2001, IEEE Trans. Autom. Control..

[7]  Manuel G. Catalano,et al.  Variable impedance actuators: A review , 2013, Robotics Auton. Syst..

[8]  Twan Koolen,et al.  Capturability-based analysis and control of legged locomotion, Part 1: Theory and application to three simple gait models , 2011, Int. J. Robotics Res..

[9]  Joris De Schutter,et al.  Extending iTaSC to support inequality constraints and non-instantaneous task specification , 2009, 2009 IEEE International Conference on Robotics and Automation.

[10]  Dragomir N. Nenchev,et al.  The Momentum Equilibrium Principle: Foot Contact Stabilization with Relative Angular Momentum/Velocity , 2018, 2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids).

[11]  Bernard Brogliato,et al.  Some perspectives on the analysis and control of complementarity systems , 2003, IEEE Trans. Autom. Control..

[12]  Mark W. Spong,et al.  Control of Planar Rigid Body Sliding with Impacts and Friction , 2000, Int. J. Robotics Res..

[13]  Dan B. Marghitu,et al.  Rigid Body Collisions of Planar Kinematic Chains With Multiple Contact Points , 1994, Int. J. Robotics Res..

[14]  S. Pashah,et al.  Prediction of structural response for low velocity impact , 2008 .

[15]  Scott Kuindersma,et al.  Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot , 2015, Autonomous Robots.

[16]  Giovanni De Magistris,et al.  Optimized humanoid walking with soft soles , 2017, Robotics Auton. Syst..

[17]  Guoqiang Hu,et al.  Energy-Based Nonlinear Control of Underactuated Euler-Lagrange Systems Subject to Impacts , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[18]  A. Borisov,et al.  Rigid Body Dynamics , 2018 .

[19]  Atsushi Konno,et al.  An impact dynamics model and sequential optimization to generate impact motions for a humanoid robot , 2011, Int. J. Robotics Res..

[20]  Prabhakar R. Pagilla,et al.  A stable transition controller for constrained robots , 2001 .

[21]  Yoshihiko Nakamura,et al.  ZMP Support Areas for Multicontact Mobility Under Frictional Constraints , 2015, IEEE Transactions on Robotics.

[22]  Daniel E. Koditschek,et al.  A hybrid systems model for simple manipulation and self-manipulation systems , 2015, Int. J. Robotics Res..

[23]  Yasar Ayaz,et al.  Analysis of nailing task motion for a humanoid robot , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[24]  Bernard Brogliato,et al.  Modeling, stability and control of biped robots - a general framework , 2004, Autom..

[25]  David E. Orin,et al.  Centroidal dynamics of a humanoid robot , 2013, Auton. Robots.

[26]  Nathan van de Wouw,et al.  Guaranteeing stable tracking of hybrid position-force trajectories for a robot manipulator interacting with a stiff environment , 2016, Autom..

[27]  Scott Kuindersma,et al.  Modeling and Control of Legged Robots , 2016, Springer Handbook of Robotics, 2nd Ed..

[28]  Yuan F. Zheng,et al.  Mathematical modeling of a robot collision with its environment , 1985, J. Field Robotics.

[29]  Shuzhi Sam Ge,et al.  A unified quadratic-programming-based dynamical system approach to joint torque optimization of physically constrained redundant manipulators , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[30]  Christine Chevallereau,et al.  Models, feedback control, and open problems of 3D bipedal robotic walking , 2014, Autom..

[31]  Vincent Padois,et al.  Whole-body hierarchical motion and force control for humanoid robots , 2016, Auton. Robots.

[32]  Pierre-Brice Wieber,et al.  Prioritizing linear equality and inequality systems: Application to local motion planning for redundant robots , 2009, 2009 IEEE International Conference on Robotics and Automation.

[33]  D. N. Nenchev,et al.  Reaction Null Space of a multibody system with applications in robotics , 2013 .

[34]  Alin Albu-Schäffer,et al.  Requirements for Safe Robots: Measurements, Analysis and New Insights , 2009, Int. J. Robotics Res..

[35]  David E. Stewart,et al.  Rigid-Body Dynamics with Friction and Impact , 2000, SIAM Rev..

[36]  Timothy Bretl,et al.  Testing Static Equilibrium for Legged Robots , 2008, IEEE Transactions on Robotics.

[37]  Giovanni De Magistris,et al.  Walking on gravel with soft soles using linear inverted pendulum tracking and reaction force distribution , 2017, 2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids).

[38]  Abderrahmane Kheddar,et al.  Impact-Friendly Robust Control Design with Task-Space Quadratic Optimization , 2019, Robotics: Science and Systems.

[39]  Abderrahmane Kheddar,et al.  Quadratic Programming for Multirobot and Task-Space Force Control , 2019, IEEE Transactions on Robotics.

[40]  Nathan van de Wouw,et al.  Control of humanoid robot motions with impacts: Numerical experiments with reference spreading control , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[41]  Ángel Valera Fernández,et al.  Adjusting the parameters of the mechanical impedance for velocity, impact and force control , 2011, Robotica.

[42]  TedrakeRuss,et al.  Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot , 2016 .

[43]  Aaron D. Ames,et al.  Stability and Completion of Zeno Equilibria in Lagrangian Hybrid Systems , 2011, IEEE Transactions on Automatic Control.

[44]  David E. Orin,et al.  Improved Computation of the Humanoid Centroidal Dynamics and Application for Whole-Body Control , 2016, Int. J. Humanoid Robotics.

[45]  Kazuhito Yokoi,et al.  Biped walking stabilization based on linear inverted pendulum tracking , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[46]  Christian Ott,et al.  DCM-Based Gait Generation for Walking on Moving Support Surfaces , 2018, 2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids).

[47]  Sylvain Bertrand,et al.  Walking on partial footholds including line contacts with the humanoid robot atlas , 2016, 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids).

[48]  Roy Featherstone,et al.  Mechanical Shock Propagation Reduction in Robot Legs , 2020, IEEE Robotics and Automation Letters.

[49]  Tomomichi Sugihara,et al.  Standing stabilizability and stepping maneuver in planar bipedalism based on the best COM-ZMP regulator , 2009, 2009 IEEE International Conference on Robotics and Automation.

[50]  Oussama Khatib,et al.  Operational space dynamics: efficient algorithms for modeling and control of branching mechanisms , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[51]  Aaron D. Ames,et al.  Realizing dynamic and efficient bipedal locomotion on the humanoid robot DURUS , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[52]  Niels Jochen Dehio,et al.  Prioritized Multi-Objective Robot Control , 2018 .

[53]  Gabriele Nava,et al.  Stability analysis and design of momentum-based controllers for humanoid robots , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[54]  Yan-Bin Jia,et al.  Batting an in-flight object to the target , 2019, Int. J. Robotics Res..

[55]  Christian Ott,et al.  Hierarchical Impedance-Based Tracking Control of Kinematically Redundant Robots , 2020, IEEE Transactions on Robotics.

[56]  Yan-Bin Jia,et al.  Analysis and Computation of Two Body Impact in Three Dimensions , 2017 .

[57]  Sung-Hee Lee,et al.  A momentum-based balance controller for humanoid robots on non-level and non-stationary ground , 2012, Auton. Robots.

[58]  Kazuhito Yokoi,et al.  Combining haptic sensing with safe interaction , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[59]  Miomir Vukobratovic,et al.  Zero-Moment Point - Thirty Five Years of its Life , 2004, Int. J. Humanoid Robotics.

[60]  Albert Wang,et al.  Proprioceptive Actuator Design in the MIT Cheetah: Impact Mitigation and High-Bandwidth Physical Interaction for Dynamic Legged Robots , 2017, IEEE Transactions on Robotics.

[61]  Abderrahmane Kheddar,et al.  Stair Climbing Stabilization of the HRP-4 Humanoid Robot using Whole-body Admittance Control , 2018, 2019 International Conference on Robotics and Automation (ICRA).

[62]  Alan P. Bowling,et al.  Impact Forces in Legged Robot Locomotion , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[63]  Timothy Bretl,et al.  Inverse optimal control for a hybrid dynamical system with impacts , 2012, 2012 IEEE International Conference on Robotics and Automation.

[64]  Koushil Sreenath,et al.  A Compliant Hybrid Zero Dynamics Controller for Stable, Efficient and Fast Bipedal Walking on MABEL , 2011, Int. J. Robotics Res..

[65]  Russ Tedrake,et al.  Stability Analysis and Control of Rigid-Body Systems With Impacts and Friction , 2016, IEEE Transactions on Automatic Control.

[66]  Abderrahmane Kheddar,et al.  On Weight-Prioritized Multitask Control of Humanoid Robots , 2018, IEEE Transactions on Automatic Control.

[67]  Aaron Hertzmann,et al.  Prioritized optimization for task-space control , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.