Visual attention mitigates information loss in small- and large-scale neural codes

The visual system transforms complex inputs into robust and parsimonious neural codes that efficiently guide behavior. Because neural communication is stochastic, the amount of encoded visual information necessarily decreases with each synapse. This constraint requires that sensory signals are processed in a manner that protects information about relevant stimuli from degradation. Such selective processing--or selective attention--is implemented via several mechanisms, including neural gain and changes in tuning properties. However, examining each of these effects in isolation obscures their joint impact on the fidelity of stimulus feature representations by large-scale population codes. Instead, large-scale activity patterns can be used to reconstruct representations of relevant and irrelevant stimuli, thereby providing a holistic understanding about how neuron-level modulations collectively impact stimulus encoding.

[1]  A. Dale,et al.  The Retinotopy of Visual Spatial Attention , 1998, Neuron.

[2]  J. Gallant,et al.  Reconstructing Visual Experiences from Brain Activity Evoked by Natural Movies , 2011, Current Biology.

[3]  G B Stanley,et al.  Reconstruction of Natural Scenes from Ensemble Responses in the Lateral Geniculate Nucleus , 1999, The Journal of Neuroscience.

[4]  Takashi R Sato,et al.  Neuronal Basis of Covert Spatial Attention in the Frontal Eye Field , 2005, The Journal of Neuroscience.

[5]  T. Womelsdorf,et al.  Dynamic shifts of visual receptive fields in cortical area MT by spatial attention , 2006, Nature Neuroscience.

[6]  Y. Saalmann,et al.  The Pulvinar Regulates Information Transmission Between Cortical Areas Based on Attention Demands , 2012, Science.

[7]  Edward Awh,et al.  Attending Multiple Items Decreases the Selectivity of Population Responses in Human Primary Visual Cortex , 2013, The Journal of Neuroscience.

[8]  Thomas C. Sprague,et al.  Changing the Spatial Scope of Attention Alters Patterns of Neural Gain in Human Cortex , 2014, The Journal of Neuroscience.

[9]  Ian H. Stevenson,et al.  Spatially Distributed Local Fields in the Hippocampus Encode Rat Position , 2014, Science.

[10]  John K. Tsotsos Analyzing vision at the complexity level , 1990, Behavioral and Brain Sciences.

[11]  Jack L. Gallant,et al.  A Continuous Semantic Space Describes the Representation of Thousands of Object and Action Categories across the Human Brain , 2012, Neuron.

[12]  Wei Ji Ma,et al.  Bayesian inference with probabilistic population codes , 2006, Nature Neuroscience.

[13]  Ryan J. Prenger,et al.  Bayesian Reconstruction of Natural Images from Human Brain Activity , 2009, Neuron.

[14]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[15]  Tirin Moore,et al.  Prefrontal contributions to visual selective attention. , 2013, Annual review of neuroscience.

[16]  Alex R. Wade,et al.  The effects of visuospatial attention measured across visual cortex using source-imaged, steady-state EEG. , 2010, Journal of vision.

[17]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[18]  Edward Awh,et al.  A Neural Measure of Precision in Visual Working Memory , 2013, Journal of Cognitive Neuroscience.

[19]  M. Goldberg,et al.  Attention, intention, and priority in the parietal lobe. , 2010, Annual review of neuroscience.

[20]  J. Serences,et al.  Near-Real-Time Feature-Selective Modulations in Human Cortex , 2013, Current Biology.

[21]  W. Martin Usrey,et al.  Attention Enhances Synaptic Efficacy and Signal-to-Noise in Neural Circuits , 2013, Nature.

[22]  James J. DiCarlo,et al.  How Does the Brain Solve Visual Object Recognition? , 2012, Neuron.

[23]  Marisa Carrasco,et al.  Attentional enhancement of spatial resolution: linking behavioural and neurophysiological evidence , 2013, Nature Reviews Neuroscience.

[24]  Benjamin D. Singer,et al.  Retinotopic Organization of Human Ventral Visual Cortex , 2009, The Journal of Neuroscience.

[25]  Yoshikazu Isomura,et al.  Two distinct layer-specific dynamics of cortical ensembles during learning of a motor task , 2014, Nature Neuroscience.

[26]  Li Fei-Fei,et al.  Neural mechanisms of rapid natural scene categorization in human visual cortex , 2009, Nature.

[27]  Masa-aki Sato,et al.  Visual Image Reconstruction from Human Brain Activity using a Combination of Multiscale Local Image Decoders , 2008, Neuron.

[28]  Anthony J. Movshon,et al.  Optimal representation of sensory information by neural populations , 2006, Nature Neuroscience.

[29]  Brian A. Wandell,et al.  Population receptive field estimates in human visual cortex , 2008, NeuroImage.

[30]  Arnulf B. A. Graf,et al.  Decoding the activity of neuronal populations in macaque primary visual cortex , 2011, Nature Neuroscience.

[31]  John H. R. Maunsell,et al.  Attentional modulation of visual motion processing in cortical areas MT and MST , 1996, Nature.

[32]  Kendrick N. Kay,et al.  Attention Reduces Spatial Uncertainty in Human Ventral Temporal Cortex , 2015, Current Biology.

[33]  B L McNaughton,et al.  Interpreting neuronal population activity by reconstruction: unified framework with application to hippocampal place cells. , 1998, Journal of neurophysiology.

[34]  D. Heeger,et al.  Categorical Clustering of the Neural Representation of Color , 2013, The Journal of Neuroscience.

[35]  Justin L. Gardner,et al.  A case for human systems neuroscience , 2015, Neuroscience.

[36]  Antony B. Morland,et al.  On the Role of Suppression in Spatial Attention: Evidence from Negative BOLD in Human Subcortical and Cortical Structures , 2014, The Journal of Neuroscience.

[37]  Brice A. Kuhl,et al.  Neural portraits of perception: Reconstructing face images from evoked brain activity , 2014, NeuroImage.

[38]  R. Zemel,et al.  Inference and computation with population codes. , 2003, Annual review of neuroscience.

[39]  Michael S. Pratte,et al.  Decoding patterns of human brain activity. , 2012, Annual review of psychology.

[40]  Chi-Hung Juan,et al.  Dissociation of spatial attention and saccade preparation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[41]  J. Serences,et al.  Attention Improves Transfer of Motion Information between V1 and MT , 2014, The Journal of Neuroscience.

[42]  Anil Bollimunta,et al.  Attention as an effect not a cause , 2014, Trends in Cognitive Sciences.

[43]  Jude F. Mitchell,et al.  Differential Attention-Dependent Response Modulation across Cell Classes in Macaque Visual Area V4 , 2007, Neuron.

[44]  Stefan Treue,et al.  Feature-based attention influences motion processing gain in macaque visual cortex , 1999, Nature.

[45]  J. Gallant,et al.  Attention to Stimulus Features Shifts Spectral Tuning of V4 Neurons during Natural Vision , 2008, Neuron.

[46]  Michael A. Silver,et al.  Hemisphere-Dependent Attentional Modulation of Human Parietal Visual Field Representations , 2015, The Journal of Neuroscience.

[47]  Nicholas A. Steinmetz,et al.  Eye Movement Preparation Modulates Neuronal Responses in Area V4 When Dissociated from Attentional Demands , 2014, Neuron.

[48]  B. Wandell,et al.  Visual Field Maps in Human Cortex , 2007, Neuron.

[49]  Scott O Murray,et al.  The effects of spatial attention in early human visual cortex are stimulus independent. , 2008, Journal of vision.

[50]  R. Desimone,et al.  Selective attention gates visual processing in the extrastriate cortex. , 1985, Science.

[51]  F. D. de Lange,et al.  Prior Expectations Bias Sensory Representations in Visual Cortex , 2013, The Journal of Neuroscience.

[52]  J. Maunsell,et al.  A Neuronal Population Measure of Attention Predicts Behavioral Performance on Individual Trials , 2010, The Journal of Neuroscience.

[53]  Earl K Miller,et al.  Cortical circuits for the control of attention , 2012, Current Opinion in Neurobiology.

[54]  Claude E. Shannon,et al.  The Mathematical Theory of Communication , 1950 .

[55]  M. Cohen,et al.  Measuring and interpreting neuronal correlations , 2011, Nature Neuroscience.

[56]  Jude F. Mitchell,et al.  Spatial Attention Decorrelates Intrinsic Activity Fluctuations in Macaque Area V4 , 2009, Neuron.

[57]  Tom Heskes,et al.  Linear reconstruction of perceived images from human brain activity , 2013, NeuroImage.

[58]  Jean-Baptiste Poline,et al.  Inverse retinotopy: Inferring the visual content of images from brain activation patterns , 2006, NeuroImage.

[59]  J. Maunsell,et al.  Effects of Attention on the Processing of Motion in Macaque Middle Temporal and Medial Superior Temporal Visual Cortical Areas , 1999, The Journal of Neuroscience.

[60]  J. Serences,et al.  Basing perceptual decisions on the most informative sensory neurons. , 2010, Journal of neurophysiology.

[61]  M. Goldberg,et al.  Neuronal Activity in the Lateral Intraparietal Area and Spatial Attention , 2003, Science.

[62]  M. Carrasco Visual attention: The past 25 years , 2011, Vision Research.

[63]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[64]  S. Kastner,et al.  Topographic maps in human frontal and parietal cortex , 2009, Trends in Cognitive Sciences.

[65]  M. Goldberg,et al.  The representation of visual salience in monkey parietal cortex , 1998, Nature.

[66]  J. Maunsell,et al.  Using Neuronal Populations to Study the Mechanisms Underlying Spatial and Feature Attention , 2011, Neuron.

[67]  Xiang Ma,et al.  Structural Basis for Degeneracy among Thermosensory Neurons in Caenorhabditis elegans , 2012, The Journal of Neuroscience.

[68]  Carrie J. McAdams,et al.  Effects of Attention on Orientation-Tuning Functions of Single Neurons in Macaque Cortical Area V4 , 1999, The Journal of Neuroscience.

[69]  D. Heeger,et al.  Spatial attention affects brain activity in human primary visual cortex. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[70]  Leslie G. Ungerleider,et al.  Mechanisms of visual attention in the human cortex. , 2000, Annual review of neuroscience.

[71]  Douglas A Ruff,et al.  Attention can increase or decrease spike count correlations between pairs of neurons depending on their role in a task , 2014, Nature Neuroscience.

[72]  Alexander G. Huth,et al.  Attention During Natural Vision Warps Semantic Representation Across the Human Brain , 2013, Nature Neuroscience.

[73]  T. Tsumoto,et al.  GABAergic Neurons Are Less Selective to Stimulus Orientation than Excitatory Neurons in Layer II/III of Visual Cortex, as Revealed by In Vivo Functional Ca2+ Imaging in Transgenic Mice , 2007, The Journal of Neuroscience.

[74]  N. Logothetis What we can do and what we cannot do with fMRI , 2008, Nature.

[75]  E. J. Tehovnik,et al.  Eye Movements Modulate Visual Receptive Fields of V4 Neurons , 2001, Neuron.

[76]  Nicole C Rust,et al.  Dynamic Target Match Signals in Perirhinal Cortex Can Be Explained by Instantaneous Computations That Act on Dynamic Input from Inferotemporal Cortex , 2014, The Journal of Neuroscience.

[77]  F. D. Lange,et al.  Shape Perception Simultaneously Up- and Downregulates Neural Activity in the Primary Visual Cortex , 2014, Current Biology.

[78]  J. Serences,et al.  Spatial attention improves the quality of population codes in human visual cortex. , 2010, Journal of neurophysiology.

[79]  G. Ghose,et al.  Featural and temporal attention selectively enhance task-appropriate representations in human primary visual cortex , 2014 .

[80]  Wei Zhang,et al.  Visualization of saltating sand particle movement near a flat ground surface , 2007, Journal of Vision.

[81]  John T Serences,et al.  Enhanced attentional gain as a mechanism for generalized perceptual learning in human visual cortex. , 2014, Journal of neurophysiology.

[82]  Edward F. Ester,et al.  Sensory Gain Outperforms Efficient Readout Mechanisms in Predicting Attention-Related Improvements in Behavior , 2014, The Journal of Neuroscience.

[83]  Serge O. Dumoulin,et al.  Attraction of Position Preference by Spatial Attention throughout Human Visual Cortex , 2014, Neuron.

[84]  John H. R. Maunsell,et al.  Attention to both space and feature modulates neuronal responses in macaque area V4. , 2000, Journal of neurophysiology.

[85]  W. Martin Usrey,et al.  Attention enhances synaptic efficacy and the signal-to-noise ratio in neural circuits , 2013 .

[86]  A. Pouget,et al.  Tuning curve sharpening for orientation selectivity: coding efficiency and the impact of correlations , 2004, Nature Neuroscience.

[87]  B. Motter Neural correlates of attentive selection for color or luminance in extrastriate area V4 , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[88]  Yevgeniy B. Sirotin,et al.  Stimulus-Related Neuroimaging in Task-Engaged Subjects Is Best Predicted by Concurrent Spiking , 2014, The Journal of Neuroscience.

[89]  Jonathan Winawer,et al.  Connective field modeling , 2013, NeuroImage.

[90]  J. Gottlieb From Thought to Action: The Parietal Cortex as a Bridge between Perception, Action, and Cognition , 2007, Neuron.

[91]  Scott D. Brown,et al.  The Optimality of Sensory Processing during the Speed–Accuracy Tradeoff , 2012, The Journal of Neuroscience.

[92]  J. Maunsell,et al.  Attention improves performance primarily by reducing interneuronal correlations , 2009, Nature Neuroscience.

[93]  Marcia Grabowecky,et al.  Attention induces synchronization-based response gain in steady-state visual evoked potentials , 2007, Nature Neuroscience.

[94]  Peter E. Latham,et al.  Narrow Versus Wide Tuning Curves: What's Best for a Population Code? , 1999, Neural Computation.

[95]  R. Desimone,et al.  Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. , 1997, Journal of neurophysiology.

[96]  Simon X. Chen,et al.  Emergence of reproducible spatiotemporal activity during motor learning , 2014, Nature.

[97]  Katharina N. Seidl,et al.  Neural Evidence for Distracter Suppression during Visual Search in Real-World Scenes , 2012, The Journal of Neuroscience.

[98]  Leslie G. Ungerleider,et al.  Increased Activity in Human Visual Cortex during Directed Attention in the Absence of Visual Stimulation , 1999, Neuron.

[99]  S. Treue,et al.  Feature-Based Attention Increases the Selectivity of Population Responses in Primate Visual Cortex , 2004, Current Biology.

[100]  John T. Serences,et al.  Reconstructions of Information in Visual Spatial Working Memory Degrade with Memory Load , 2014, Current Biology.

[101]  Eero P. Simoncelli,et al.  Partitioning neuronal variability , 2014, Nature Neuroscience.

[102]  Terrence J. Sejnowski,et al.  Neuronal Tuning: To Sharpen or Broaden? , 1999, Neural Computation.

[103]  T. Moore,et al.  Saccades and shifting receptive fields: anticipating consequences or selecting targets? , 2014, Trends in Cognitive Sciences.

[104]  B. C. Motter Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. , 1993, Journal of neurophysiology.

[105]  J. Maunsell,et al.  Attentional Modulation of Behavioral Performance and Neuronal Responses in Middle Temporal and Ventral Intraparietal Areas of Macaque Monkey , 2002, The Journal of Neuroscience.

[106]  Stefan Treue,et al.  Expansion of MT Neurons Excitatory Receptive Fields during Covert Attentive Tracking , 2011, The Journal of Neuroscience.

[107]  J. Serences,et al.  Optimal Deployment of Attentional Gain during Fine Discriminations , 2012, The Journal of Neuroscience.

[108]  Stefan Treue,et al.  Attention Reshapes Center-Surround Receptive Field Structure in Macaque Cortical Area MT , 2009, Cerebral cortex.

[109]  J. Gallant,et al.  Identifying natural images from human brain activity , 2008, Nature.

[110]  D. Butts,et al.  Tuning Curves, Neuronal Variability, and Sensory Coding , 2006, PLoS biology.

[111]  D. Heeger,et al.  Cross-orientation suppression in human visual cortex. , 2011, Journal of neurophysiology.

[112]  John H. R. Maunsell,et al.  Feature-based attention in visual cortex , 2006, Trends in Neurosciences.

[113]  D. Heeger,et al.  Decoding and Reconstructing Color from Responses in Human Visual Cortex , 2009, The Journal of Neuroscience.

[114]  T. Womelsdorf,et al.  Receptive Field Shift and Shrinkage in Macaque Middle Temporal Area through Attentional Gain Modulation , 2008, The Journal of Neuroscience.

[115]  Tirin Moore,et al.  Selection and Maintenance of Spatial Information by Frontal Eye Field Neurons , 2009, The Journal of Neuroscience.

[116]  Viola S. Störmer,et al.  Feature-Based Attention Elicits Surround Suppression in Feature Space , 2014, Current Biology.

[117]  John T. Serences,et al.  Attention modulates spatial priority maps in the human occipital, parietal and frontal cortices , 2013, Nature Neuroscience.

[118]  F. D. Silva,et al.  EEG and MEG: Relevance to Neuroscience , 2013, Neuron.

[119]  Matthias M. Müller,et al.  The time course of cortical facilitation during cued shifts of spatial attention , 1998, Nature Neuroscience.

[120]  Giedrius T Buracas,et al.  The Effect of Spatial Attention on Contrast Response Functions in Human Visual Cortex , 2007, The Journal of Neuroscience.

[121]  F. Bremmer,et al.  Visual receptive field modulation in the lateral intraparietal area during attentive fixation and free gaze. , 2002, Cerebral cortex.

[122]  J. Bisley,et al.  A pure salience response in posterior parietal cortex. , 2011, Cerebral cortex.

[123]  G. Buzsáki,et al.  NeuroGrid: recording action potentials from the surface of the brain , 2014, Nature Neuroscience.

[124]  Nicholas A. Steinmetz,et al.  Visual Space is Compressed in Prefrontal Cortex Before Eye Movements , 2014, Nature.

[125]  R. Desimone,et al.  A backward progression of attentional effects in the ventral stream , 2009, Proceedings of the National Academy of Sciences.

[126]  John T. Serences,et al.  Computational advances towards linking BOLD and behavior , 2012, Neuropsychologia.

[127]  Alexandre Zénon,et al.  Attention deficits without cortical neuronal deficits , 2012, Nature.

[128]  R. Desimone,et al.  Long-range neural coupling through synchronization with attention. , 2009, Progress in brain research.

[129]  Katharina N. Seidl-Rathkopf,et al.  Functions of the human frontoparietal attention network: Evidence from neuroimaging , 2015, Current Opinion in Behavioral Sciences.

[130]  Miranda Scolari,et al.  Estimating the influence of attention on population codes in human visual cortex using voxel-based tuning functions , 2009, NeuroImage.

[131]  Mark D'Esposito,et al.  Attention Selectively Modifies the Representation of Individual Faces in the Human Brain , 2013, The Journal of Neuroscience.

[132]  A. Pouget,et al.  Information-limiting correlations , 2014, Nature Neuroscience.

[133]  Alexander Thiele,et al.  Attention-Induced Variance and Noise Correlation Reduction in Macaque V1 Is Mediated by NMDA Receptors , 2013, Neuron.

[134]  Jack L. Gallant,et al.  Encoding and decoding in fMRI , 2011, NeuroImage.

[135]  D. V. van Essen,et al.  Spatial Attention Effects in Macaque Area V4 , 1997, The Journal of Neuroscience.

[136]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[137]  D. Heeger,et al.  Attentional Enhancement via Selection and Pooling of Early Sensory Responses in Human Visual Cortex , 2011, Neuron.

[138]  Elaine J. Anderson,et al.  Perceptual load affects spatial tuning of neuronal populations in human early visual cortex , 2014, Current Biology.