Ways to Tell Robots Where to Go - Directing Autonomous Robots Using Topological Instructions

This article presents our attempts to direct an autonomous robot using efficient and universal topological instructions, which can be incrementally interpreted by a moving robot that does not have its own map initially. Many real-world experiments are included, featuring autonomous exploration and mapping. Surprisingly, we conclude and show that for this type of navigation, abilities in object recognition are more important than better mapping. The article describes a GVD-derived topology of spatial affordances, in which junctions are defined by the physical capabilities of the navigating robot. Similar to the extended GVD, our topology follows walls in open spaces to ensure robust edge transition so that all features can be modeled egocentcally. The specified wall-following distance is calculated to maximize the stability of the egocentrically modeled topology even when obstacle detection is intermittent.

[1]  Wolfram Burgard,et al.  Speeding-up multi-robot exploration by considering semantic place information , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[2]  Masatsugu Kidode,et al.  Robot navigation in corridor environments using a sketch floor map , 2003, Proceedings 2003 IEEE International Symposium on Computational Intelligence in Robotics and Automation. Computational Intelligence in Robotics and Automation for the New Millennium (Cat. No.03EX694).

[3]  David P. Miller,et al.  The 1995 Robot Competition and Exhibition , 1996, AI Mag..

[4]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[5]  Alberto Elfes,et al.  Using occupancy grids for mobile robot perception and navigation , 1989, Computer.

[6]  Roland Siegwart,et al.  Hybrid simultaneous localization and map building: a natural integration of topological and metric , 2003, Robotics Auton. Syst..

[7]  H. Christensen,et al.  ROBUST SLAM , 2004 .

[8]  Keiji Nagatani,et al.  Topological simultaneous localization and mapping (SLAM): toward exact localization without explicit localization , 2001, IEEE Trans. Robotics Autom..

[9]  Wolfram Burgard,et al.  Exploration with active loop-closing for FastSLAM , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[10]  Howie Choset,et al.  Autonomous exploration via regions of interest , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[11]  Bruce A. MacDonald,et al.  Natural landmark based localisation system using panoramic images , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[12]  Evangelos E. Milios,et al.  Globally Consistent Range Scan Alignment for Environment Mapping , 1997, Auton. Robots.

[13]  Howie Choset,et al.  The hierarchical atlas , 2005, IEEE Transactions on Robotics.

[14]  John R. Kender,et al.  Topological Direction-Giving and Visual Navigation in Large Environments , 1995, Artif. Intell..

[15]  Ray A. Jarvis,et al.  Topologically-directed navigation , 2008, Robotica.

[16]  Roland Siegwart,et al.  Simultaneous localization and map building: a global topological model with local metric maps , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[17]  David Silver,et al.  Feature extraction for topological mine maps , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[18]  Deb Roy,et al.  Interpretation of Spatial Language in a Map Navigation Task , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[19]  Diane J. Cook,et al.  User-guided reinforcement learning of robot assistive tasks for an intelligent environment , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[20]  Howie Choset,et al.  Sensor-Based Exploration: The Hierarchical Generalized Voronoi Graph , 2000, Int. J. Robotics Res..

[21]  David Silver,et al.  Towards Topological Exploration of Abandoned Mines , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[22]  Illah R. Nourbakhsh,et al.  DERVISH - An Office-Navigating Robot , 1995, AI Mag..

[23]  K. Okada,et al.  Humanoid motion generation system on HRP2-JSK for daily life environment , 2005, IEEE International Conference Mechatronics and Automation, 2005.

[24]  Benjamin Kuipers,et al.  The Spatial Semantic Hierarchy , 2000, Artif. Intell..

[25]  Roland Siegwart,et al.  Incremental robot mapping with fingerprints of places , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[26]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[27]  Sebastian Thrun,et al.  FastSLAM 2.0: An Improved Particle Filtering Algorithm for Simultaneous Localization and Mapping that Provably Converges , 2003, IJCAI.

[28]  Sebastian Thrun,et al.  Probabilistic robotics , 2002, CACM.

[29]  Benjamin Kuipers,et al.  Local metrical and global topological maps in the hybrid spatial semantic hierarchy , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[30]  Frank Dellaert,et al.  Data driven MCMC for Appearance-based Topological Mapping , 2005, Robotics: Science and Systems.

[31]  Jae-Bok Song,et al.  Real-time building of a thinning-based topological map with metric features , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[32]  Keiji Nagatani,et al.  Towards exact localization without explicit localization with the generalized Voronoi graph , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[33]  Benjamin Kuipers,et al.  Towards Autonomous Topological Place Detection Using the Extended Voronoi Graph , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.