Internal models for motor control and trajectory planning

[1]  Hiroshi Imamizu,et al.  Human cerebellar activity reflecting an acquired internal model of a new tool , 2000, Nature.

[2]  T. Kitama,et al.  Motor dynamics encoding in cat cerebellar flocculus middle zone during optokinetic eye movements. , 1999, Journal of neurophysiology.

[3]  D J Ostry,et al.  Compensation for interaction torques during single- and multijoint limb movement. , 1999, Journal of neurophysiology.

[4]  J R Flanagan,et al.  Composition and Decomposition of Internal Models in Motor Learning under Altered Kinematic and Dynamic Environments , 1999, The Journal of Neuroscience.

[5]  Kenji Doya,et al.  What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? , 1999, Neural Networks.

[6]  P. Morasso,et al.  Can muscle stiffness alone stabilize upright standing? , 1999, Journal of neurophysiology.

[7]  K. Doya,et al.  Electrophysiological properties of inferior olive neurons: A compartmental model. , 1999, Journal of neurophysiology.

[8]  L. Snyder This way up: illusions and internal models in the vestibular system , 1999, Nature Neuroscience.

[9]  Y Uno,et al.  Quantitative examinations of internal representations for arm trajectory planning: minimum commanded torque change model. , 1999, Journal of neurophysiology.

[10]  R. Shadmehr,et al.  Inhibitory control of competing motor memories , 1999, Experimental Brain Research.

[11]  D M Merfeld,et al.  Humans use internal models to estimate gravity and linear acceleration , 1999, Nature.

[12]  J. Baizer,et al.  Cerebellar lesions and prism adaptation in macaque monkeys. , 1999, Journal of neurophysiology.

[13]  R L Sainburg,et al.  Intersegmental dynamics are controlled by sequential anticipatory, error correction, and postural mechanisms. , 1999, Journal of neurophysiology.

[14]  M. Kawato,et al.  Cerebro-cerebellar functional connectivity revealed by the laterality index in tool-use learning. , 1999, Neuroreport.

[15]  H. Eng,et al.  Synthesis of β-Tubulin, Actin, and Other Proteins in Axons of Sympathetic Neurons in Compartmented Cultures , 1999, The Journal of Neuroscience.

[16]  Masaaki Honda,et al.  Kinematic construction of the trajectory of sequential arm movements , 1999, Biological Cybernetics.

[17]  J. Vercher,et al.  The oculomanual coordination control center takes into account the mechanical properties of the arm , 1999, Experimental Brain Research.

[18]  B. Hess,et al.  Oculomotor control of primary eye position discriminates between translation and tilt. , 1999, Journal of neurophysiology.

[19]  T. Ebner A role for the cerebellum in the control of limb movement velocity , 1998, Current Opinion in Neurobiology.

[20]  Mitsuo Kawato,et al.  Multiple Paired Forward-Inverse Models for Human Motor Learning and Control , 1998, NIPS.

[21]  D. Wolpert,et al.  Central cancellation of self-produced tickle sensation , 1998, Nature Neuroscience.

[22]  M. Kawato,et al.  A strategy of motor learning using adjustable parameters for arm movement , 1998, Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol.20 Biomedical Engineering Towards the Year 2000 and Beyond (Cat. No.98CH36286).

[23]  D M Wolpert,et al.  Multiple paired forward and inverse models for motor control , 1998, Neural Networks.

[24]  D M Wolpert,et al.  Predicting the Consequences of Our Own Actions: The Role of Sensorimotor Context Estimation , 1998, The Journal of Neuroscience.

[25]  P. Strick,et al.  The cerebellum: an overview , 1998, Trends in Neurosciences.

[26]  J. Simpson,et al.  Microcircuitry and function of the inferior olive , 1998, Trends in Neurosciences.

[27]  Daniel M. Wolpert,et al.  Making smooth moves , 2022 .

[28]  M. Kawato,et al.  Temporal firing patterns of Purkinje cells in the cerebellar ventral paraflocculus during ocular following responses in monkeys II. Complex spikes. , 1998, Journal of neurophysiology.

[29]  J. Lackner,et al.  Gravitoinertial force background level affects adaptation to coriolis force perturbations of reaching movements. , 1998, Journal of neurophysiology.

[30]  Michael I. Jordan,et al.  Smoothness maximization along a predefined path accurately predicts the speed profiles of complex arm movements. , 1998, Journal of neurophysiology.

[31]  Michael I. Jordan,et al.  The Role of Inertial Sensitivity in Motor Planning , 1998, The Journal of Neuroscience.

[32]  W. T. Thach A Role for the Cerebellum in Learning Movement Coordination , 1998, Neurobiology of Learning and Memory.

[33]  W. T. Thach,et al.  Simple spike activity predicts occurrence of complex spikes in cerebellar Purkinje cells , 1998, Nature Neuroscience.

[34]  Tatsuya Kimura,et al.  Cerebellar complex spikes encode both destinations and errors in arm movements , 1998, Nature.

[35]  D. Wolpert,et al.  Temporal and amplitude generalization in motor learning. , 1998, Journal of neurophysiology.

[36]  D J Ostry,et al.  Are complex control signals required for human arm movement? , 1998, Journal of neurophysiology.

[37]  M. Arbib,et al.  Role of the cerebellum in reaching movements in humans. II. A neural model of the intermediate cerebellum , 1998, The European journal of neuroscience.

[38]  M. Kawato,et al.  Temporal firing patterns of Purkinje cells in the cerebellar ventral paraflocculus during ocular following responses in monkeys I. Simple spikes. , 1998, Journal of neurophysiology.

[39]  Yasushi Kobayashi,et al.  A mathematical model that reproduces vertical ocular following responses from visual stimuli by reproducing the simple spike firing frequency of Purkinje cells in the cerebellum , 1997, Neuroscience Research.

[40]  F. Mussa-Ivaldi,et al.  The motor system does not learn the dynamics of the arm by rote memorization of past experience. , 1997, Journal of neurophysiology.

[41]  R Osu,et al.  Possible explanations for trajectory curvature in multijoint arm movements. , 1997, Journal of experimental psychology. Human perception and performance.

[42]  E. Rolls,et al.  Cognition, Computation, and Consciousness , 1997 .

[43]  M. Kawato Bidirectional theory approach to consciousness. , 1997 .

[44]  Zoubin Ghahramani,et al.  Modular decomposition in visuomotor learning , 1997, Nature.

[45]  S. Kitazawa,et al.  Prism Adaptation of Reaching Movements: Specificity for the Velocity of Reaching , 1997, The Journal of Neuroscience.

[46]  J R Flanagan,et al.  The Role of Internal Models in Motion Planning and Control: Evidence from Grip Force Adjustments during Movements of Hand-Held Loads , 1997, The Journal of Neuroscience.

[47]  T. Brashers-Krug,et al.  Functional Stages in the Formation of Human Long-Term Motor Memory , 1997, The Journal of Neuroscience.

[48]  Michael I. Jordan,et al.  Generalization to Local Remappings of the Visuomotor Coordinate Transformation , 1996, The Journal of Neuroscience.

[49]  Howard N. Zelaznik,et al.  Advances in Motor Learning and Control , 1996 .

[50]  E Bizzi,et al.  Motor learning by field approximation. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Mitsuo Kawato,et al.  Equilibrium-Point Control Hypothesis Examined by Measured Arm Stiffness During Multijoint Movement , 1996, Science.

[52]  Mitsuo Kawato,et al.  TRAJECTORY FORMATION IN ARM MOVEMENTS: MINIMIZATION PRINCIPLES AND PROCEDURES , 1996 .

[53]  A. Takemura,et al.  Visual inputs to cerebellar ventral paraflocculus during ocular following responses. , 1996, Progress in brain research.

[54]  Yiannis Aloimonos,et al.  Vision and action , 1995, Image Vis. Comput..

[55]  J R Flanagan,et al.  Trajectory adaptation to a nonlinear visuomotor transformation: evidence of motion planning in visually perceived space. , 1995, Journal of neurophysiology.

[56]  M. Kawato,et al.  Internal representations of the motor apparatus: implications from generalization in visuomotor learning. , 1995, Journal of experimental psychology. Human perception and performance.

[57]  J. Lackner,et al.  Rapid adaptation to Coriolis force perturbations of arm trajectory. , 1994, Journal of neurophysiology.

[58]  Terence D. Sanger,et al.  Neural network learning control of robot manipulators using gradually increasing task difficulty , 1994, IEEE Trans. Robotics Autom..

[59]  F A Mussa-Ivaldi,et al.  Adaptive representation of dynamics during learning of a motor task , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[60]  M. Kawato,et al.  Inverse-dynamics model eye movement control by Purkinje cells in the cerebellum , 1993, Nature.

[61]  D. Wolpert,et al.  Is the cerebellum a smith predictor? , 1993, Journal of motor behavior.

[62]  M. Kawato,et al.  The cerebellum and VOR/OKR learning models , 1992, Trends in Neurosciences.

[63]  Michael I. Jordan,et al.  Forward Models: Supervised Learning with a Distal Teacher , 1992, Cogn. Sci..

[64]  G. L. Gottlieb,et al.  Reconstruction of shifting elbow joint compliant characteristics during fast and slow movements , 1991, Neuroscience.

[65]  Geoffrey E. Hinton,et al.  Adaptive Mixtures of Local Experts , 1991, Neural Computation.

[66]  宇野 洋二,et al.  Formation and control of optimal trajectory in human multijoint arm movement : minimum torque-change model , 1988 .

[67]  T. Flash,et al.  The coordination of arm movements: an experimentally confirmed mathematical model , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[68]  E. Bizzi,et al.  Posture control and trajectory formation during arm movement , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[69]  E. Bizzi,et al.  Human arm trajectory formation. , 1982, Brain : a journal of neurology.

[70]  J. Albus A Theory of Cerebellar Function , 1971 .

[71]  M Ito,et al.  Neurophysiological aspects of the cerebellar motor control system. , 1970, International journal of neurology.

[72]  D. Marr A theory of cerebellar cortex , 1969, The Journal of physiology.