RIVAGe Feedback during Visual Integration : towards a Generic Architecture

We consider the comparative study of visual process integration within either a biological system (i.e. the parieto-ventral and parieto-dorsal pathways of the cortical visual system in the primate) or an artificial system. Both systems deliver an estimation of [where], that is to say the motion and structure of the observed scene and of [what], i.e. the perceptual grouping and labeling of objects in the scene. The long term goal is to elaborate a common theory about precise questions in both neurosciences and algorithms and their architecture in artificial vision, including computer vision applications. Within this framework, the function and behavior of adaptive feedback mechanisms is a key point and on the leading edge of biological studies. The core of this idea is that visual processing is build around: 1) a first computational step allowing to pre-process the input information, provide initial estimates, generate hypotheses about which models to use, ? 2) a refinement step using iterative mechanisms of optimization of the visual perception. Such mechanisms occur, sometimes implicitly, in artificial vision processes. They are mainly related to such problems as the combination of visual attributes, computed from different sources and then fused for ``what'' and ``where'' perceptual tasks; the use of a-priori information, obtained from higher-level visual modules. These modules define models estimated from the data. These models are either given a-priori (e.g. rigidity, shape regularity, ..) or chosen thanks to object labeling obtained during the first computational step. The present work is a theoretical study in three steps: (a) a systematic analysis of existing results in neuro-science, (b) an interpretation of these results from the viewpoint of the variational approach widely used in computer vision (c) a specification of a simulation tool of parts of the visual cortex.

[1]  P. H. Schiller Effect of lesions in visual cortical area V4 on the recognition of transformed objects , 1995, Nature.

[2]  C. Malsburg Self-organization of orientation sensitive cells in the striate cortex , 2004, Kybernetik.

[3]  W. Merigan,et al.  Basic visual capacities and shape discrimination after lesions of extrastriate area V4 in macaques , 1996, Visual Neuroscience.

[4]  S. Shipp,et al.  The functional logic of cortical connections , 1988, Nature.

[5]  Jean Bullier,et al.  Neural Basis of Vision , 2002 .

[6]  Laurent Perrinet,et al.  Emergence of filters from natural scenes in a sparse spike coding scheme , 2004, Neurocomputing.

[7]  R. Vogels Categorization of complex visual images by rhesus monkeys. Part 1: behavioural study , 1999, The European journal of neuroscience.

[8]  Shimon Ullman,et al.  Class-Specific, Top-Down Segmentation , 2002, ECCV.

[9]  K. Rockland,et al.  Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey , 1979, Brain Research.

[10]  Hans-Hellmut Nagel,et al.  An Investigation of Smoothness Constraints for the Estimation of Displacement Vector Fields from Image Sequences , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  P. Degond,et al.  The weighted particle method for convection-diffusion equations. II. The anisotropic case , 1989 .

[12]  M. Bear,et al.  Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Keiji Tanaka,et al.  Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. , 1994, Journal of neurophysiology.

[14]  Karl J. Friston Functional integration and inference in the brain , 2002, Progress in Neurobiology.

[15]  Thierry Viéville,et al.  Implementing a Multi-Model Estimation Method , 2001, International Journal of Computer Vision.

[16]  S. Thorpe,et al.  Spike times make sense , 2005, Trends in Neurosciences.

[17]  G Bugmann,et al.  Biologically plausible neural computation. , 1997, Bio Systems.

[18]  Olivier D. Faugeras,et al.  Variational Methods for Multimodal Image Matching , 2002, International Journal of Computer Vision.

[19]  A. N. Tikhonov,et al.  REGULARIZATION OF INCORRECTLY POSED PROBLEMS , 1963 .

[20]  M. Bear,et al.  Hebbian synapses in visual cortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[21]  W. D. Ross,et al.  Visual brain and visual perception: how does the cortex do perceptual grouping? , 1997, Trends in Neurosciences.

[22]  J. Petitot,et al.  Vers une neurogéométrie. Fibrations corticales, structures de contact et contours subjectifs modaux , 1999 .

[23]  Kenneth D. Miller,et al.  The Role of Constraints in Hebbian Learning , 1994, Neural Computation.

[24]  H. Markram,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997, Science.

[25]  K. Miller,et al.  Synaptic Economics: Competition and Cooperation in Synaptic Plasticity , 1996, Neuron.

[26]  D. Perrett,et al.  Visual neurones responsive to faces in the monkey temporal cortex , 2004, Experimental Brain Research.

[27]  Nava Rubin,et al.  Figure and ground in the brain , 2001, Nature Neuroscience.

[28]  S Ullman,et al.  Sequence seeking and counter streams: a computational model for bidirectional information flow in the visual cortex. , 1995, Cerebral cortex.

[29]  John Daugman Brain metaphor and brain theory , 1993 .

[30]  C. Connor,et al.  Responses to contour features in macaque area V4. , 1999, Journal of neurophysiology.

[31]  J. Hegdé,et al.  Selectivity for Complex Shapes in Primate Visual Area V2 , 2000, The Journal of Neuroscience.

[32]  O. Faugeras,et al.  A Biologically Motivated and Computationally Tractable Model of Low and Mid-Level Vision Tasks , 2004, ECCV.

[33]  Michael J. Berry,et al.  The structure and precision of retinal spike trains. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[34]  K. Miller,et al.  Ocular dominance column development: analysis and simulation. , 1989, Science.

[35]  J. Changeux,et al.  Computational models of association cortex , 2000, Current Opinion in Neurobiology.

[36]  Kiyohiko Nakamura Neural Processing in the Subsecond Time Range in the Temporal Cortex , 1998, Neural Computation.

[37]  Leslie G. Ungerleider,et al.  Impairments in spatial generalization of visual skills after V4 and TEO lesions in macaques (Macaca mulatta). , 2003, Behavioral neuroscience.

[38]  N. Logothetis,et al.  The Effect of Learning on the Function of Monkey Extrastriate Visual Cortex , 2004, PLoS biology.

[39]  Peter De Weerd,et al.  Generalized deficits in visual selective attention after V4 and TEO lesions in macaques , 2003, The European journal of neuroscience.

[40]  H. Pashler STEVENS' HANDBOOK OF EXPERIMENTAL PSYCHOLOGY , 2002 .

[41]  Heiko Neumann,et al.  Computational Neural Models of Spatial Integration in Perceptual Grouping , 2001 .

[42]  Rajesh P. N. Rao,et al.  Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. , 1999 .

[43]  S. Grossberg,et al.  Cortical computation of stereo disparity , 1998, Vision Research.

[44]  S. Grossberg,et al.  Neural dynamics of motion processing and speed discrimination , 1998, Vision Research.

[45]  J. Bullier,et al.  Visual activity in area V2 during reversible inactivation of area 17 in the macaque monkey. , 1989, Journal of neurophysiology.

[46]  B J Richmond,et al.  Temporal encoding of two-dimensional patterns by single units in primate primary visual cortex. II. Information transmission. , 1990, Journal of neurophysiology.

[47]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[48]  O. Faugeras Three-dimensional computer vision: a geometric viewpoint , 1993 .

[49]  Reyes Enciso,et al.  Experimenting with 3D vision on a robotic head , 1995, Robotics Auton. Syst..

[50]  J. Bullier,et al.  Reaching beyond the classical receptive field of V1 neurons: horizontal or feedback axons? , 2003, Journal of Physiology-Paris.

[51]  Martin A. Giese,et al.  Biophysiologically Plausible Implementations of the Maximum Operation , 2002, Neural Computation.

[52]  Thierry Viéville Towards biologically plausible regularization mechanisms , 2003 .

[53]  Nikos Paragios,et al.  Shape Priors for Level Set Representations , 2002, ECCV.

[54]  Arnaud Delorme,et al.  Networks of integrate-and-fire neurons using Rank Order Coding B: Spike timing dependent plasticity and emergence of orientation selectivity , 2001, Neurocomputing.

[55]  S. Thorpe,et al.  Seeking Categories in the Brain , 2001, Science.

[56]  Jean Bullier,et al.  The Timing of Information Transfer in the Visual System , 1997 .

[57]  J. Jost Riemannian geometry and geometric analysis , 1995 .

[58]  J. Victor,et al.  Nature and precision of temporal coding in visual cortex: a metric-space analysis. , 1996, Journal of neurophysiology.

[59]  R. Malenka,et al.  An essential role for protein phosphatases in hippocampal long-term depression. , 1993, Science.

[60]  Jean Bullier,et al.  Shape discrimination deficits during reversible deactivation of area V4 in the macaque monkey. , 2002, Cerebral cortex.

[61]  Daniel Cremers,et al.  Nonlinear Shape Statistics in Mumford-Shah Based Segmentation , 2002, ECCV.

[62]  Rachid Deriche,et al.  Vector-valued image regularization with PDE's: a common framework for different applications , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[63]  S. Grossberg,et al.  Self-Organization of Binocular Disparity Tuning by Reciprocal Corticogeniculate Interactions , 1998, Journal of Cognitive Neuroscience.

[64]  P A Salin,et al.  Corticocortical connections in the visual system: structure and function. , 1995, Physiological reviews.

[65]  Henry Kennedy,et al.  Early specification of the hierarchical organization of visual cortical areas in the macaque monkey. , 2002, Cerebral cortex.

[66]  P. Schiller,et al.  Effect of cooling area 18 on striate cortex cells in the squirrel monkey. , 1982, Journal of neurophysiology.

[67]  J. Maunsell,et al.  The Effect of Perceptual Learning on Neuronal Responses in Monkey Visual Area V4 , 2004, The Journal of Neuroscience.

[68]  Nava Rubin,et al.  Segmentation in structure from motion: modeling and psychophysics , 2001, Vision Research.

[69]  Ben H. Jansen,et al.  Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns , 1995, Biological Cybernetics.

[70]  S. Grossberg,et al.  Towards a theory of the laminar architecture of cerebral cortex: computational clues from the visual system. , 2003, Cerebral cortex.

[71]  S. Zeki,et al.  Colour coding in rhesus monkey prestriate cortex. , 1973, Brain research.

[72]  Roman Bek,et al.  Discourse on one way in which a quantum-mechanics language on the classical logical base can be built up , 1978, Kybernetika.

[73]  Mark F. Bear,et al.  Bidirectional modification of CA1 synapses in the adult hippocampus in vivo , 1996, Nature.

[74]  Luis Alvarez,et al.  Formalization and computational aspects of image analysis , 1994, Acta Numerica.

[75]  J. Bullier,et al.  Visual latencies in areas V1 and V2 of the macaque monkey , 1995, Visual Neuroscience.

[76]  Peter Dayan,et al.  Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems , 2001 .

[77]  John H. R. Maunsell,et al.  Hierarchical organization and functional streams in the visual cortex , 1983, Trends in Neurosciences.

[78]  D. Tschumperlé PDE's based regularization of multivalued images and applications , 2002 .

[79]  J. J. Hopfield,et al.  Pattern recognition computation using action potential timing for stimulus representation , 1995, Nature.

[80]  G. Bi,et al.  Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type , 1998, The Journal of Neuroscience.

[81]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[82]  J. Bullier Feedback connections and conscious vision , 2001, Trends in Cognitive Sciences.

[83]  L. Abbott,et al.  Competitive Hebbian learning through spike-timing-dependent synaptic plasticity , 2000, Nature Neuroscience.

[84]  Stephen Grossberg,et al.  Cortical dynamics of three-dimensional surface perception: Binocular and half-occluded scenic images , 1997, Neural Networks.

[85]  E. Bienenstock,et al.  Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[86]  R. Deriche,et al.  Les EDP en traitement des images et vision par ordinateur , 1995 .

[87]  D. C. Essen,et al.  Neural responses to polar, hyperbolic, and Cartesian gratings in area V4 of the macaque monkey. , 1996, Journal of neurophysiology.

[88]  Olivier Faugeras,et al.  Knowledge-Based Segmentation of Medical Images , 2003 .

[89]  Chris Eliasmith,et al.  Neural Engineering: Computation, Representation, and Dynamics in Neurobiological Systems , 2004, IEEE Transactions on Neural Networks.

[90]  Rajesh P. N. Rao,et al.  Spike-Timing-Dependent Hebbian Plasticity as Temporal Difference Learning , 2001, Neural Computation.

[91]  Nigel H. Goddard,et al.  Towards NeuroML: model description methods for collaborative modelling in neuroscience. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[92]  Rufin van Rullen,et al.  Neurons Tune to the Earliest Spikes Through STDP , 2005, Neural Computation.

[93]  Yves Burnod,et al.  An adaptive neural network - the cerebral cortex , 1991 .

[94]  L. Schwartz Théorie des distributions , 1966 .

[95]  Thierry Viéville Biologically plausible regularization mechanisms , 2002 .

[96]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[97]  Rachid Deriche,et al.  Four Applications of Differential Geometry to Computer Vision , 1992 .

[98]  Richard Durbin,et al.  The computing neuron , 1989 .

[99]  T. Poggio,et al.  Cognitive neuroscience: Neural mechanisms for the recognition of biological movements , 2003, Nature Reviews Neuroscience.

[100]  Robert C. Liu,et al.  Variability and information in a neural code of the cat lateral geniculate nucleus. , 2001, Journal of neurophysiology.

[101]  J. M. Hupé,et al.  Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons , 1998, Nature.

[102]  A. Leonard Vortex methods for flow simulation , 1980 .

[103]  S. Thorpe,et al.  Rapid categorization of natural images by rhesus monkeys , 1998, Neuroreport.

[104]  Thierry Vi'eville,et al.  A deterministic biologically plausible classifier , 2004, Neurocomputing.

[105]  D. L. Adams,et al.  Functional organization of macaque V3 for stereoscopic depth. , 2001, Journal of neurophysiology.

[106]  Denis Fize,et al.  Speed of processing in the human visual system , 1996, Nature.

[107]  M. Lappe,et al.  Measurement of generalization fields for the recognition of biological motion , 2002, Vision Research.

[108]  H. A. Pham,et al.  V4 lesions in macaques affect both single- and multiple-viewpoint shape discriminations , 1998, Visual Neuroscience.

[109]  T. Bliss,et al.  Long‐lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path , 1973, The Journal of physiology.

[110]  N Rubin,et al.  The Role of Junctions in Surface Completion and Contour Matching , 2001, Perception.

[111]  Carrie J. McAdams,et al.  Effects of Attention on Orientation-Tuning Functions of Single Neurons in Macaque Cortical Area V4 , 1999, The Journal of Neuroscience.

[112]  Rajesh P. N. Rao,et al.  Eye movements in iconic visual search , 2002, Vision Research.

[113]  J. Koenderink The brain a geometry engine , 1990, Psychological research.

[114]  J. Bullier Integrated model of visual processing , 2001, Brain Research Reviews.

[115]  R. Guillery Binocular competition in the control of geniculate cell growth , 1972, The Journal of comparative neurology.

[116]  Kenji Kawano,et al.  Global and fine information coded by single neurons in the temporal visual cortex , 1999, Nature.

[117]  Eero P. Simoncelli,et al.  A model of neuronal responses in visual area MT , 1998, Vision Research.

[118]  Wulfram Gerstner,et al.  Mathematical formulations of Hebbian learning , 2002, Biological Cybernetics.

[119]  M. Bar A Cortical Mechanism for Triggering Top-Down Facilitation in Visual Object Recognition , 2003, Journal of Cognitive Neuroscience.

[120]  C. Büchel,et al.  Modulation of connectivity in visual pathways by attention: cortical interactions evaluated with structural equation modelling and fMRI. , 1997, Cerebral cortex.

[121]  P. H. Schiller,et al.  The effects of V4 and middle temporal (MT) area lesions on visual performance in the rhesus monkey , 1993, Visual Neuroscience.

[122]  Christof Koch,et al.  Temporal Precision of Spike Trains in Extrastriate Cortex of the Behaving Macaque Monkey , 1999, Neural Computation.