Orientation Selectivity and Its Modulation by Local and Long-Range Connections in Visual Cortex

Publisher Summary This chapter presents the models and data constituting a powerful argument for the proposal that orientation selectivity is generated and modulated by a combination of thalamocortical inputs to visual cortex (VI) neurons and intracortical processing. Cortical neurons are embedded in diverse circuitry: Each neuron receives not only excitatory thalamocortical inputs but also excitatory intracortical input from local neurons, inhibitory input from local interneurons, and excitatory long range input from distant neurons. A model involving iso-orientation intracortical excitation to amplify lateral geniculate nucleus (LGN) responses at line ends is able to reproduce the subjective contour responses and representations within V1. These response properties include orientation selectivity, modulation of orientation selective responses by spatial context or surround stimuli, and modulation as well by temporal context or pattern adaptation. A linear feedforward model of orientation selectivity is adequate for explaining the simplest, first-order, responses of V1 neurons, at a time when responses to unitary stimuli presented within the receptive field center are regarded as the only significant property of V1 cells.

[1]  D. Burr,et al.  Functional implications of cross-orientation inhibition of cortical visual cells. I. Neurophysiological evidence , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[2]  L. Maffei,et al.  Neural Correlate of Perceptual Adaptation to Gratings , 1973, Science.

[3]  C. Koch,et al.  Visibility of synaptically induced conductance changes: theory and simulations of anatomically characterized cortical pyramidal cells , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[4]  M. Carandini,et al.  A tonic hyperpolarization underlying contrast adaptation in cat visual cortex. , 1997, Science.

[5]  S. Nelson,et al.  An emergent model of orientation selectivity in cat visual cortical simple cells , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[6]  J. Deuchars,et al.  Large, deep layer pyramid-pyramid single axon EPSPs in slices of rat motor cortex display paired pulse and frequency-dependent depression, mediated presynaptically and self-facilitation, mediated postsynaptically. , 1993, Journal of neurophysiology.

[7]  A. L. Humphrey,et al.  Projection patterns of individual X‐ and Y‐cell axons from the lateral geniculate nucleus to cortical area 17 in the cat , 1985, The Journal of comparative neurology.

[8]  K. Tanaka,et al.  Organization of cat visual cortex as investigated by cross-correlation technique. , 1981, Journal of neurophysiology.

[9]  P. Somogyi,et al.  Targets and Quantitative Distribution of GABAergic Synapses in the Visual Cortex of the Cat , 1990, The European journal of neuroscience.

[10]  B. Connors,et al.  Efficacy of Thalamocortical and Intracortical Synaptic Connections Quanta, Innervation, and Reliability , 1999, Neuron.

[11]  D. Ferster Spatially opponent excitation and inhibition in simple cells of the cat visual cortex , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[12]  KD Miller A model for the development of simple cell receptive fields and the ordered arrangement of orientation columns through activity-dependent competition between ON- and OFF-center inputs , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[13]  G. L. Gerstein,et al.  Interactions between cat striate cortex neurons , 2004, Experimental Brain Research.

[14]  M. Sur,et al.  Subthreshold facilitation and suppression in primary visual cortex revealed by intrinsic signal imaging. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[15]  E. Todorov,et al.  A local circuit approach to understanding integration of long-range inputs in primary visual cortex. , 1998, Cerebral cortex.

[16]  U. Eysel,et al.  Network of GABAergic large basket cells in cat visual cortex (area 18): Implication for lateral disinhibition , 1993, The Journal of comparative neurology.

[17]  David J. Field,et al.  Contour integration by the human visual system: Evidence for a local “association field” , 1993, Vision Research.

[18]  C. Koch,et al.  Modeling direction selectivity of simple cells in striate visual cortex within the framework of the canonical microcircuit , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[19]  L. Abbott,et al.  Synaptic Depression and Cortical Gain Control , 1997, Science.

[20]  T. Wiesel,et al.  Clustered intrinsic connections in cat visual cortex , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[21]  J. Deuchars,et al.  Synaptic interactions in neocortical local circuits: dual intracellular recordings in vitro. , 1997, Cerebral cortex.

[22]  J. B. Levitt,et al.  Contrast dependence of contextual effects in primate visual cortex , 1997, nature.

[23]  W Reichardt,et al.  Visual control of orientation behaviour in the fly: Part II. Towards the underlying neural interactions , 1976, Quarterly Reviews of Biophysics.

[24]  C. Blakemore,et al.  Lateral inhibition between orientation detectors in the cat's visual cortex , 2004, Experimental Brain Research.

[25]  D. G. Albrecht,et al.  Motion selectivity and the contrast-response function of simple cells in the visual cortex , 1991, Visual Neuroscience.

[26]  Frances S. Chance,et al.  Synaptic Depression and the Temporal Response Characteristics of V1 Cells , 1998, The Journal of Neuroscience.

[27]  Kevan A. C. Martin,et al.  A Canonical Microcircuit for Neocortex , 1989, Neural Computation.

[28]  D. Whitteridge,et al.  Synaptic targets of HRP-filled layer III pyramidal cells in the cat striate cortex , 2004, Experimental Brain Research.

[29]  J. Malpeli Activity of cells in area 17 of the cat in absence of input from layer a of lateral geniculate nucleus. , 1983, Journal of neurophysiology.

[30]  Emanuel Todorov,et al.  A Model of Recurrent Interactions in Primary Visual Cortex , 1996, NIPS.

[31]  R. Douglas,et al.  Opening the grey box , 1991, Trends in Neurosciences.

[32]  Trichur Raman Vidyasagar,et al.  A linear model fails to predict orientation selectivity of cells in the cat visual cortex. , 1996, The Journal of physiology.

[33]  M. Carandini,et al.  Predictions of a recurrent model of orientation selectivity , 1997, Vision Research.

[34]  Y. Frégnac,et al.  Visual input evokes transient and strong shunting inhibition in visual cortical neurons , 1998, Nature.

[35]  J. Cowan,et al.  Excitatory and inhibitory interactions in localized populations of model neurons. , 1972, Biophysical journal.

[36]  O. Creutzfeldt,et al.  An intracellular analysis of visual cortical neurones to moving stimuli: Responses in a co-operative neuronal network , 2004, Experimental Brain Research.

[37]  Trichur Raman Vidyasagar,et al.  Orientation sensitivity of cat LGN neurones with and without inputs from visual cortical areas 17 and 18 , 2004, Experimental Brain Research.

[38]  L. Abbott,et al.  Divisive inhibition in recurrent networks , 2000, Network.

[39]  Teuvo Kohonen,et al.  Self-Organization and Associative Memory , 1988 .

[40]  C. Enroth-Cugell,et al.  Spatio‐temporal interactions in cat retinal ganglion cells showing linear spatial summation. , 1983, The Journal of physiology.

[41]  H. K. Hartline,et al.  THE RECEPTIVE FIELDS OF OPTIC NERVE FIBERS , 1940 .

[42]  H. Wässle,et al.  Size, scatter and coverage of ganglion cell receptive field centres in the cat retina. , 1979, The Journal of physiology.

[43]  D. Fitzpatrick,et al.  Patterns of excitation and inhibition evoked by horizontal connections in visual cortex share a common relationship to orientation columns , 1995, Neuron.

[44]  D. Heeger Modeling simple-cell direction selectivity with normalized, half-squared, linear operators. , 1993, Journal of neurophysiology.

[45]  G. Buzsáki,et al.  Hippocampal CA1 interneurons: an in vivo intracellular labeling study , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[46]  A. B. Bonds Temporal dynamics of contrast gain in single cells of the cat striate cortex , 1991, Visual Neuroscience.

[47]  I. Ohzawa,et al.  Length and width tuning of neurons in the cat's primary visual cortex. , 1994, Journal of neurophysiology.

[48]  C. Gilbert,et al.  Synaptic physiology of horizontal connections in the cat's visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[49]  O. Creutzfeldt,et al.  Vertical organization in the visual cortex (area 17) in the cat , 2004, Experimental Brain Research.

[50]  D. Tolhurst,et al.  Spatial summation by simple cells in the striate cortex of the cat , 2004, Experimental Brain Research.

[51]  R. Reid,et al.  Specificity of monosynaptic connections from thalamus to visual cortex , 1995, Nature.

[52]  T. Wiesel,et al.  Functional architecture of cortex revealed by optical imaging of intrinsic signals , 1986, Nature.

[53]  A. Peters,et al.  Organization of pyramidal neurons in area 17 of monkey visual cortex , 1991, The Journal of comparative neurology.

[54]  G. Orban,et al.  The suppressive influence of moving textured backgrounds on responses of cat striate neurons to moving bars. , 1987, Journal of neurophysiology.

[55]  I. Ohzawa,et al.  Local intracortical connections in the cat's visual cortex: postnatal development and plasticity. , 1994, Journal of neurophysiology.

[56]  D. Whitteridge,et al.  Form, function and intracortical projections of spiny neurones in the striate visual cortex of the cat. , 1984, The Journal of physiology.

[57]  J. B. Levitt,et al.  Comparison of intrinsic connectivity in different areas of macaque monkey cerebral cortex. , 1993, Cerebral cortex.

[58]  D. Whitteridge,et al.  Selective responses of visual cortical cells do not depend on shunting inhibition , 1988, Nature.

[59]  K. Martin,et al.  The Wellcome Prize lecture. From single cells to simple circuits in the cerebral cortex. , 1988, Quarterly journal of experimental physiology.

[60]  R. Shapley,et al.  New perspectives on the mechanisms for orientation selectivity , 1997, Current Opinion in Neurobiology.

[61]  O. Creutzfeldt,et al.  The representation of contrast and other stimulus parameters by single neurons in area 17 of the cat , 1984, Pflügers Archiv.

[62]  S. Blomfield Arithmetical operations performed by nerve cells. , 1974, Brain research.

[63]  D. Hubel,et al.  Ferrier lecture - Functional architecture of macaque monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[64]  J. Horton,et al.  Receptive field properties in the cat's lateral geniculate nucleus in the absence of on-center retinal input , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[65]  J C Anderson,et al.  Synaptic output of physiologically identified spiny stellate neurons in cat visual cortex , 1994, The Journal of comparative neurology.

[66]  I. Ohzawa,et al.  Linear and nonlinear contributions to orientation tuning of simple cells in the cat's striate cortex , 1999, Visual Neuroscience.

[67]  P. Hammond,et al.  Neural motion after-effects in the cat's striate cortex: Orientation selectivity , 1989, Vision Research.

[68]  M Sur,et al.  Integration of local inputs in visual cortex. , 1997, Cerebral cortex.

[69]  H. K. Hartline,et al.  THE EFFECTS OF SPATIAL SUMMATION IN THE RETINA ON THE EXCITATION OF THE FIBERS OF THE OPTIC NERVE , 1940 .

[70]  S. Grossberg The quantized geometry of visual space: The coherent computation of depth, form, and lightness , 1982, Behavioral and Brain Sciences.

[71]  S. Levay,et al.  Synaptic organization of claustral and geniculate afferents to the visual cortex of the cat , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[72]  D. Whitteridge,et al.  Mechanisms of inhibition in cat visual cortex. , 1991, The Journal of physiology.

[73]  S. Nelson,et al.  Temporal interactions in the cat visual system. III. Pharmacological studies of cortical suppression suggest a presynaptic mechanism , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[74]  L. Abbott,et al.  A model of multiplicative neural responses in parietal cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[75]  J. Nelson,et al.  Orientation-selective inhibition from beyond the classic visual receptive field , 1978, Brain Research.

[76]  R. Traub,et al.  Neuronal Networks of the Hippocampus , 1991 .

[77]  C. Koch,et al.  A detailed model of the primary visual pathway in the cat: comparison of afferent excitatory and intracortical inhibitory connection schemes for orientation selectivity , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[78]  E. L. Schwartz,et al.  Cat and monkey cortical columnar patterns modeled by bandpass-filtered 2D white noise , 1990, Biological Cybernetics.

[79]  D. V. van Essen,et al.  Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. , 1992, Journal of neurophysiology.

[80]  S. Ullman,et al.  A model for the temporal organization of X- and Y-type receptive fields in the primate retina , 2004, Biological Cybernetics.

[81]  P. O. Bishop,et al.  Dimensions and properties of end-zone inhibitory areas in receptive fields of hypercomplex cells in cat striate cortex. , 1979, Journal of neurophysiology.

[82]  J. C. Anderson,et al.  Map of the synapses formed with the dendrites of spiny stellate neurons of cat visual cortex , 1994, The Journal of comparative neurology.

[83]  A. Thomson,et al.  Fluctuations in pyramid-pyramid excitatory postsynaptic potentials modified by presynaptic firing pattern and postsynaptic membrane potential using paired intracellular recordings in rat neocortex , 1993, Neuroscience.

[84]  T. Sejnowski,et al.  Effects of inhibition and dendritic saturation in simulated neocortical pyramidal cells. , 1994, Journal of neurophysiology.

[85]  J. A. Hirsch Synaptic integration in layer IV of the ferret striate cortex. , 1995, The Journal of physiology.

[86]  S. Hestrin,et al.  Frequency-dependent synaptic depression and the balance of excitation and inhibition in the neocortex , 1998, Nature Neuroscience.

[87]  R. Douglas,et al.  A functional microcircuit for cat visual cortex. , 1991, The Journal of physiology.

[88]  H Sherk,et al.  Receptive field properties in the cat's area 17 in the absence of on- center geniculate input , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[89]  D. Whitteridge,et al.  An intracellular analysis of the visual responses of neurones in cat visual cortex. , 1991, The Journal of physiology.

[90]  A. Peters,et al.  Neuronal organization in area 17 of cat visual cortex. , 1993, Cerebral cortex.

[91]  J. Nelson,et al.  Intracortical facilitation among co-oriented, co-axially aligned simple cells in cat striate cortex , 2004, Experimental Brain Research.

[92]  A. T. Smith,et al.  Motion after-effects in cat striate cortex elicited by moving texture , 1986, Vision Research.

[93]  J. C. Anderson,et al.  Polyneuronal innervation of spiny stellate neurons in cat visual cortex , 1994, The Journal of comparative neurology.

[94]  William R. Softky,et al.  The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[95]  J. Deuchars,et al.  Temporal and spatial properties of local circuits in neocortex , 1994, Trends in Neurosciences.

[96]  J. Lund,et al.  Widespread periodic intrinsic connections in the tree shrew visual cortex. , 1982, Science.

[97]  K. Albus,et al.  Effects of interacting visual patterns on single cell responses in cat's striate cortex , 1977, Vision Research.

[98]  R. Reid,et al.  Synaptic Integration in Striate Cortical Simple Cells , 1998, The Journal of Neuroscience.

[99]  A. Peters,et al.  Numerical relationships between geniculocortical afferents and pyramidal cell modules in cat primary visual cortex. , 1993, Cerebral cortex.

[100]  D. Ferster,et al.  Linearity of summation of synaptic potentials underlying direction selectivity in simple cells of the cat visual cortex. , 1993, Science.

[101]  D. Fitzpatrick,et al.  Orientation Selectivity and the Arrangement of Horizontal Connections in Tree Shrew Striate Cortex , 1997, The Journal of Neuroscience.

[102]  D. Hubel,et al.  Shape and arrangement of columns in cat's striate cortex , 1963, The Journal of physiology.

[103]  J. P. Jones,et al.  The two-dimensional spatial structure of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[104]  C. Blakemore,et al.  Adaptation to spatial stimuli. , 1969, The Journal of physiology.

[105]  J. Malpeli,et al.  Cat area 17. I. Pattern of thalamic control of cortical layers. , 1986, Journal of neurophysiology.

[106]  Stephen Grossberg,et al.  Contour Enhancement, Short Term Memory, and Constancies in Reverberating Neural Networks , 1973 .

[107]  M. Carandini,et al.  Summation and division by neurons in primate visual cortex. , 1994, Science.

[108]  P. O. Bishop,et al.  Receptive fields of simple cells in the cat striate cortex , 1973, The Journal of physiology.

[109]  A. Peters,et al.  Myelinated axons and the pyramidal cell modules in monkey primary visual cortex , 1996, The Journal of comparative neurology.

[110]  E Kaplan,et al.  Contrast affects the transmission of visual information through the mammalian lateral geniculate nucleus. , 1987, The Journal of physiology.

[111]  P. Lennie,et al.  Pattern-selective adaptation in visual cortical neurones , 1979, Nature.

[112]  U. Polat,et al.  Lateral interactions between spatial channels: Suppression and facilitation revealed by lateral masking experiments , 1993, Vision Research.

[113]  S. Nelson,et al.  Orientation selectivity of cortical neurons during intracellular blockade of inhibition. , 1994, Science.

[114]  D. Ferster,et al.  Strength and Orientation Tuning of the Thalamic Input to Simple Cells Revealed by Electrically Evoked Cortical Suppression , 1998, Neuron.

[115]  H. Tamura,et al.  Inhibition contributes to orientation selectivity in visual cortex of cat , 1988, Nature.

[116]  Frank Sengpiel,et al.  PII: S0042-6989(97)00413-6 , 1998 .

[117]  R. Freeman,et al.  A comparison of inhibition in orientation and spatial frequency selectivity of cat visual cortex , 1986, Nature.

[118]  K. Stratford,et al.  Synaptic transmission between individual pyramidal neurons of the rat visual cortex in vitro , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[119]  A. Sillito,et al.  A re-evaluation of the mechanisms underlying simple cell orientation selectivity , 1980, Brain Research.

[120]  S. W. Kuffler Discharge patterns and functional organization of mammalian retina. , 1953, Journal of neurophysiology.

[121]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[122]  I. Ohzawa,et al.  Contrast gain control in the cat visual cortex , 1982, Nature.

[123]  Frances S. Chance,et al.  Complex cells as cortically amplified simple cells , 1999, Nature Neuroscience.

[124]  P. Rakic Specification of cerebral cortical areas. , 1988, Science.

[125]  D. Ferster Linearity of synaptic interactions in the assembly of receptive fields in cat visual cortex , 1994, Current Opinion in Neurobiology.

[126]  M. Sur,et al.  Dynamic properties of recurrent inhibition in primary visual cortex: contrast and orientation dependence of contextual effects. , 2000, Journal of neurophysiology.

[127]  C. Gilbert Horizontal integration and cortical dynamics , 1992, Neuron.

[128]  U. Eysel,et al.  GABA-induced remote inactivation reveals cross-orientation inhibition in the cat striate cortex , 2004, Experimental Brain Research.

[129]  D. Tolhurst,et al.  Factors influencing the temporal phase of response to bar and grating stimuli for simple cells in the cat striate cortex , 2004, Experimental Brain Research.

[130]  R. Shapley,et al.  A neuronal network model of macaque primary visual cortex (V1): orientation selectivity and dynamics in the input layer 4Calpha. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[131]  M. Weliky,et al.  Functional mapping of horizontal connections in developing ferret visual cortex: experiments and modeling , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[132]  E Kaplan,et al.  Abnormal orientation bias of LGN neurons in strabismic cats. , 1988, Investigative ophthalmology & visual science.

[133]  M. Carandini,et al.  Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex. , 2000, Journal of neurophysiology.

[134]  C. Gilbert,et al.  Improvement in visual sensitivity by changes in local context: Parallel studies in human observers and in V1 of alert monkeys , 1995, Neuron.

[135]  G. A. Orban,et al.  Quantitative study of striate single unit responses in monkeys performing an orientation discrimination task , 2004, Experimental Brain Research.

[136]  H. Sompolinsky,et al.  Theory of orientation tuning in visual cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[137]  K. Martin,et al.  Excitatory synaptic inputs to spiny stellate cells in cat visual cortex , 1996, Nature.

[138]  M Stemmler,et al.  Lateral interactions in primary visual cortex: a model bridging physiology and psychophysics. , 1995, Science.

[139]  D. Ferster,et al.  EPSP-IPSP interactions in cat visual cortex studied with in vivo whole- cell patch recording , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[140]  Dario L. Ringach,et al.  Computational Modeling of Orientation Tuning Dynamics in Monkey Primary Visual Cortex , 2000, Journal of Computational Neuroscience.

[141]  Michael N. Shadlen,et al.  Noise, neural codes and cortical organization , 1994, Current Opinion in Neurobiology.

[142]  A. Das,et al.  Orientation in Visual Cortex: A Simple Mechanism Emerges , 1996, Neuron.

[143]  J. Deuchars,et al.  Single axon excitatory postsynaptic potentials in neocortical interneurons exhibit pronounced paired pulse facilitation , 1993, Neuroscience.

[144]  R. Shapley,et al.  Contrast's effect on spatial summation by macaque V1 neurons , 1999, Nature Neuroscience.

[145]  M. Sur,et al.  Adaptation-Induced Plasticity of Orientation Tuning in Adult Visual Cortex , 2000, Neuron.

[146]  J. Movshon,et al.  Pattern adaptation and cross-orientation interactions in the primary visual cortex , 1998, Neuropharmacology.

[147]  Maria V. Sanchez-Vives,et al.  Membrane Mechanisms Underlying Contrast Adaptation in Cat Area 17In Vivo , 2000, The Journal of Neuroscience.

[148]  D. Ferster,et al.  Orientation selectivity of thalamic input to simple cells of cat visual cortex , 1996, Nature.

[149]  Trichur Raman Vidyasagar,et al.  Receptive field analysis and orientation selectivity of postsynaptic potentials of simple cells in cat visual cortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[150]  M. Carandini,et al.  Membrane Potential and Firing Rate in Cat Primary Visual Cortex , 2000, The Journal of Neuroscience.

[151]  A. Saul,et al.  Adaptation in single units in visual cortex: The tuning of aftereffects in the temporal domain , 1989, Visual Neuroscience.

[152]  J. Bullier,et al.  Functional interactions between areas V1 and V2 in the monkey , 1996, Journal of Physiology-Paris.

[153]  D. W. Watkins,et al.  The orientation selectivity of single neurons in cat striate cortex , 1974, Experimental Brain Research.

[154]  P. H. Schiller Central connections of the retinal ON and OFF pathways , 1982, Nature.

[155]  H. Hazama,et al.  Effects of gravitational changes on RNA of cerebral neurons and glia. I. RNA changes of Deiters' cells and glia. , 1968, Brain research.

[156]  U. Polat,et al.  Collinear stimuli regulate visual responses depending on cell's contrast threshold , 1998, Nature.

[157]  J. Deuchars,et al.  Properties of single axon excitatory postsynaptic potentials elicited in spiny interneurons by action potentials in pyramidal neurons in slices of rat neocortex , 1995, Neuroscience.

[158]  T. Wiesel,et al.  The influence of contextual stimuli on the orientation selectivity of cells in primary visual cortex of the cat , 1990, Vision Research.

[159]  D. Ferster Orientation selectivity of synaptic potentials in neurons of cat primary visual cortex , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[160]  J. B. Levitt,et al.  Cells and circuits contributing to functional properties in area V1 of macaque monkey cerebral cortex: bases for neuroanatomically realistic models. , 1995, Journal of anatomy.

[161]  C. Gilbert,et al.  Spatial integration and cortical dynamics. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[162]  Dario L. Ringach,et al.  Dynamics of orientation tuning in macaque primary visual cortex , 1997, Nature.

[163]  Haim Sompolinsky,et al.  New perspectives on the mechanisms for orientation , 1997 .

[164]  W. Kamphuis,et al.  The kindling model of epilepsy the role of gabaergic inhibition , 1990 .

[165]  T. Freund,et al.  Disinhibition of rat hippocampal pyramidal cells by GABAergic afferents from the septum. , 1997, The Journal of physiology.

[166]  R. Born,et al.  Single-unit and 2-deoxyglucose studies of side inhibition in macaque striate cortex. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[167]  T. Wiesel,et al.  Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[168]  Nicholas J. Priebe,et al.  Contrast-Invariant Orientation Tuning in Cat Visual Cortex: Thalamocortical Input Tuning and Correlation-Based Intracortical Connectivity , 1998, The Journal of Neuroscience.

[169]  R. Shapley,et al.  Linear mechanism of orientation tuning in the retina and lateral geniculate nucleus of the cat. , 1987, Journal of neurophysiology.

[170]  K. Miller Development of orientation columns via competition between ON- and OFF-center inputs. , 1992, Neuroreport.

[171]  K. Martin,et al.  Excitation by geniculocortical synapses is not ‘vetoed’ at the level of dendritic spines in cat visual cortex. , 1991, The Journal of physiology.

[172]  C. Koch,et al.  Recurrent excitation in neocortical circuits , 1995, Science.

[173]  T. Wiesel,et al.  Functional architecture of macaque monkey visual cortex , 1977 .

[174]  T. Wiesel,et al.  Targets of horizontal connections in macaque primary visual cortex , 1991, The Journal of comparative neurology.

[175]  D. Tolhurst,et al.  The effects of contrast on the linearity of spatial summation of simple cells in the cat's striate cortex , 2004, Experimental Brain Research.

[176]  D. McCormick,et al.  Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. , 1985, Journal of neurophysiology.

[177]  I. Ohzawa,et al.  Organization of suppression in receptive fields of neurons in cat visual cortex. , 1992, Journal of neurophysiology.

[178]  Shaul Hestrin,et al.  Activation and desensitization of glutamate-activated channels mediating fast excitatory synaptic currents in the visual cortex , 1992, Neuron.

[179]  I. Ohzawa,et al.  Receptive-field dynamics in the central visual pathways , 1995, Trends in Neurosciences.

[180]  D. G. Albrecht,et al.  Striate cortex of monkey and cat: contrast response function. , 1982, Journal of neurophysiology.

[181]  T. Tsumoto,et al.  Modification of orientation sensitivity of cat visual cortex neurons by removal of GABA-mediated inhibition , 1979, Experimental Brain Research.

[182]  H. Jones,et al.  Visual cortical mechanisms detecting focal orientation discontinuities , 1995, Nature.

[183]  M. Sur,et al.  Orientation Maps of Subjective Contours in Visual Cortex , 1996, Science.

[184]  M. Cynader,et al.  Anatomical properties and physiological correlates of the intrinsic connections in cat area 18 , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[185]  D. Ferster,et al.  Neural mechanisms of orientation selectivity in the visual cortex. , 2000, Annual review of neuroscience.

[186]  R. Reid,et al.  Precisely correlated firing in cells of the lateral geniculate nucleus , 1996, Nature.

[187]  R. Freeman,et al.  Orientation selectivity in the cat's striate cortex is invariant with stimulus contrast , 2004, Experimental Brain Research.

[188]  B. Connors,et al.  Electrophysiological properties of neocortical neurons in vitro. , 1982, Journal of neurophysiology.

[189]  U. Eysel,et al.  GABA-induced inactivation of functionally characterized sites in cat visual cortex (area 18): effects on orientation tuning , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[190]  C. Enroth-Cugell,et al.  Receptive field properties of X and Y cells in the cat retina derived from contrast sensitivity measurements , 1982, Vision Research.

[191]  R. Frostig,et al.  Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[192]  R. Hess,et al.  Effects of glutamate and GABA on specific response properties of neurones in the visual cortex , 2004, Experimental Brain Research.

[193]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[194]  D. Heeger Normalization of cell responses in cat striate cortex , 1992, Visual Neuroscience.

[195]  S. Grossberg,et al.  Pattern formation, contrast control, and oscillations in the short term memory of shunting on-center off-surround networks , 1975, Biological Cybernetics.

[196]  P. C. Murphy,et al.  Feedback connections to the lateral geniculate nucleus and cortical response properties. , 1999, Science.

[197]  M. Carandini,et al.  Stimulus dependence of two-state fluctuations of membrane potential in cat visual cortex , 2000, Nature Neuroscience.

[198]  D. Ferster Origin of orientation-selective EPSPs in simple cells of cat visual cortex , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[199]  J. Movshon,et al.  Spatial summation in the receptive fields of simple cells in the cat's striate cortex. , 1978, The Journal of physiology.

[200]  A. Sillito The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. , 1975, The Journal of physiology.

[201]  R. W. Rodieck,et al.  Analysis of receptive fields of cat retinal ganglion cells. , 1965, Journal of neurophysiology.

[202]  D. Hubel,et al.  Specificity of intrinsic connections in primate primary visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[203]  Ennio Mingolla,et al.  Neural dynamics of perceptual grouping: Textures, boundaries, and emergent segmentations , 1985 .

[204]  A. Grinvald,et al.  Relationship between intrinsic connections and functional architecture revealed by optical imaging and in vivo targeted biocytin injections in primate striate cortex. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[205]  L. Maffei,et al.  The unresponsive regions of visual cortical receptive fields , 1976, Vision Research.

[206]  D H HUBEL,et al.  RECEPTIVE FIELDS AND FUNCTIONAL ARCHITECTURE IN TWO NONSTRIATE VISUAL AREAS (18 AND 19) OF THE CAT. , 1965, Journal of neurophysiology.

[207]  Nicholas V. Swindale,et al.  A model for the coordinated development of columnar systems in primate striate cortex , 2004, Biological Cybernetics.

[208]  Stephen Grossberg,et al.  Rules for the cortical map of ocular dominance and orientation columns , 1994, Neural Networks.

[209]  A. Grinvald,et al.  Imaging Cortical Dynamics at High Spatial and Temporal Resolution with Novel Blue Voltage-Sensitive Dyes , 1999, Neuron.

[210]  C. Koch,et al.  Neuronal connections underlying orientation selectivity in cat visual cortex , 1987, Trends in Neurosciences.

[211]  E. Todorov,et al.  Modeling Visual Cortical Contrast Adaptation Effects , 1997 .

[212]  A. B. Bonds Role of Inhibition in the Specification of Orientation Selectivity of Cells in the Cat Striate Cortex , 1989, Visual Neuroscience.

[213]  T R Vidyasagar,et al.  Dynamics of the orientation tuning of postsynaptic potentials in the cat visual cortex , 1995, Visual Neuroscience.

[214]  T. Wiesel,et al.  Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex , 1979, Nature.

[215]  D. Whitteridge,et al.  Innervation of cat visual areas 17 and 18 by physiologically identified X‐ and Y‐ type thalamic afferents. II. Identification of postsynaptic targets by GABA immunocytochemistry and Golgi impregnation , 1985, The Journal of comparative neurology.

[216]  T. Wiesel,et al.  Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[217]  P. Somogyi,et al.  Quantitative distribution of GABA-immunoreactive neurons in the visual cortex (area 17) of the cat , 2004, Experimental Brain Research.

[218]  T. Poggio,et al.  The synaptic veto mechanism: does it underlie direction and orientation selectivity in the visual cortex , 1985 .

[219]  A. T. Smith,et al.  Motion after-effects in cat striate cortex elicited by moving gratings , 2004, Experimental Brain Research.

[220]  C. Blakemore,et al.  Characteristics of surround inhibition in cat area 17 , 1997, Experimental Brain Research.

[221]  Professor Dr. Guy A. Orban Neuronal Operations in the Visual Cortex , 1983, Studies of Brain Function.

[222]  M. Stryker,et al.  Relation of cortical cell orientation selectivity to alignment of receptive fields of the geniculocortical afferents that arborize within a single orientation column in ferret visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[223]  L. P. O'Keefe,et al.  Adaptation to contingencies in macaque primary visual cortex. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[224]  E. Fetz,et al.  Intracortical connectivity revealed by spike-triggered averaging in slice preparations of cat visual cortex , 1988, Brain Research.