Horse-like walking, trotting, and galloping derived from kinematic Motion Primitives (kMPs) and their application to walk/trot transitions in a compliant quadruped robot

This manuscript proposes a method to directly transfer the features of horse walking, trotting, and galloping to a quadruped robot, with the aim of creating a much more natural (horse-like) locomotion profile. A principal component analysis on horse joint trajectories shows that walk, trot, and gallop can be described by a set of four kinematic Motion Primitives (kMPs). These kMPs are used to generate valid, stable gaits that are tested on a compliant quadruped robot. Tests on the effects of gait frequency scaling as follows: results indicate a speed optimal walking frequency around 3.4 Hz, and an optimal trotting frequency around 4 Hz. Following, a criterion to synthesize gait transitions is proposed, and the walk/trot transitions are successfully tested on the robot. The performance of the robot when the transitions are scaled in frequency is evaluated by means of roll and pitch angle phase plots.

[1]  D. F. Hoyt,et al.  Gait and the energetics of locomotion in horses , 1981, Nature.

[2]  Marc H. Raibert,et al.  Legged Robots That Balance , 1986, IEEE Expert.

[3]  N. Heglund,et al.  Speed, stride frequency and energy cost per stride: how do they change with body size and gait? , 1988, The Journal of experimental biology.

[4]  Isao Shimoyama,et al.  Dynamics in the dynamic walk of a quadruped robot , 1989, Adv. Robotics.

[5]  M H Raibert,et al.  Trotting, pacing and bounding by a quadruped robot. , 1990, Journal of biomechanics.

[6]  Masakatsu G. Fujie,et al.  Foot trajectory for a quadruped walking machine , 1990, EEE International Workshop on Intelligent Robots and Systems, Towards a New Frontier of Applications.

[7]  J. Vilensky,et al.  Trot-gallop gait transitions in quadrupeds , 1991, Physiology and Behavior.

[8]  Katsuhiko Inagaki,et al.  A gait transition for quadruped walking machine , 1993, Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93).

[9]  Karsten Berns,et al.  The mammalian-like quadrupedal walking machine BISAM , 1998, AMC'98 - Coimbra. 1998 5th International Workshop on Advanced Motion Control. Proceedings (Cat. No.98TH8354).

[10]  Hiroaki Kitano,et al.  Development of an Autonomous Quadruped Robot for Robot Entertainment , 1998, Auton. Robots.

[11]  Hiroshi Kimura,et al.  Biologically-inspired adaptive dynamic walking of the quadruped on irregular terrain , 1999, Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328).

[12]  M. Fischer,et al.  Quadrupedal mammals as paragons for walking machines , 2000 .

[13]  Aude Billard,et al.  Biologically inspired neural controllers for motor control in a quadruped robot , 2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium.

[14]  Shin-Min Song,et al.  Modeling gait transitions of quadrupeds and their generalization with CMAC neural networks , 2002, IEEE Trans. Syst. Man Cybern. Part C.

[15]  Akio Ishiguro,et al.  Generation of an adaptive controller CPG for a quadruped robot with neuromodulation mechanism , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[16]  Yasuhiro Fukuoka,et al.  Adaptive Dynamic Walking of a Quadruped Robot on Irregular Terrain Based on Biological Concepts , 2003, Int. J. Robotics Res..

[17]  David E. Orin,et al.  Achieving periodic leg trajectories to evolve a quadruped gallop , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[18]  Huosheng Hu,et al.  Parameter optimisation of an evolutionary algorithm for on-line gait generation of quadruped robots , 2003, IEEE International Conference on Industrial Technology, 2003.

[19]  Huosheng Hu,et al.  GA-BASED GAIT GENERATION OF SONY QUADRUPED ROBOTS , 2003 .

[20]  D. F. Hoyt,et al.  Biomechanical and energetic determinants of the walk–trot transition in horses , 2004, Journal of Experimental Biology.

[21]  Luther R. Palmer,et al.  System Design of a Quadrupedal Galloping Machine , 2004, Int. J. Robotics Res..

[22]  J. J. Collins,et al.  Hard-wired central pattern generators for quadrupedal locomotion , 1994, Biological Cybernetics.

[23]  K. Ishii,et al.  Locomotion of a quadruped robot using CPG , 2004, 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541).

[24]  Takayuki Suzuki,et al.  Generation of Adaptive Gait Patterns for Quadruped Robot with CPG Network including Motor Dynamic Model , 2004 .

[25]  R. Pfeifer,et al.  Exploiting body dynamics for controlling a running quadruped robot , 2005, ICAR '05. Proceedings., 12th International Conference on Advanced Robotics, 2005..

[26]  Zhao Liyao,et al.  A biological inspired quadruped robot: structure and control , 2005 .

[27]  Kazuo Tsuchiya,et al.  Dynamic turning control of a quadruped locomotion robot using oscillators , 2005, Adv. Robotics.

[28]  Martin Buehler,et al.  Modeling and Experiments of Untethered Quadrupedal Running with a Bounding Gait: The Scout II Robot , 2005, Int. J. Robotics Res..

[29]  Dongbing Gu,et al.  Hybrid learning architecture for fuzzy control of quadruped walking robots , 2005, Int. J. Intell. Syst..

[30]  Dongbing Gu,et al.  Hybrid learning architecture for fuzzy control of quadruped walking robots: Research Articles , 2005 .

[31]  Zhifeng Cheng,et al.  A biological inspired quadruped robot: structure and control , 2005, 2005 IEEE International Conference on Robotics and Biomimetics - ROBIO.

[32]  Juan C. Grieco,et al.  Gait Synthesis and Modulation for Quadruped Robot Locomotion Using a Simple Feed-Forward Network , 2006, ICAISC.

[33]  Denis Fisseler,et al.  Learning in a High Dimensional Space: Fast Omnidirectional Quadrupedal Locomotion , 2006, RoboCup.

[34]  Ohung Kwon,et al.  Elliptic Trajectory Generation for Galloping Quadruped Robots , 2006, 2006 IEEE International Conference on Robotics and Biomimetics.

[35]  Stefan Schaal,et al.  A Robust Quadruped Walking Gait for Traversing Rough Terrain , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[36]  Yasuhiro Fukuoka,et al.  Adaptive Dynamic Walking of a Quadruped Robot on Natural Ground Based on Biological Concepts , 2007, Int. J. Robotics Res..

[37]  Gerardo Fernandez-Lopez,et al.  A CPG WITH FORCE FEEDBACK FOR A STATICALLY STABLE QUADRUPED GAIT , 2007 .

[38]  Jerry E. Pratt,et al.  A Controller for the LittleDog Quadruped Walking on Rough Terrain , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[39]  Auke Jan Ijspeert,et al.  Central pattern generators for locomotion control in animals and robots: A review , 2008, Neural Networks.

[40]  G. Metta,et al.  A modular bio-inspired architecture for movement generation for the infant-like robot iCub , 2008, 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics.

[41]  Kevin Blankespoor,et al.  BigDog, the Rough-Terrain Quadruped Robot , 2008 .

[42]  A.J. Ijspeert,et al.  Passive compliant quadruped robot using Central Pattern Generators for locomotion control , 2008, 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics.

[43]  Dae-Hee Won,et al.  Foot Trajectory Generation of Hydraulic Quadruped Robots on Uneven Terrain , 2008 .

[44]  Ludovic Righetti,et al.  Pattern generators with sensory feedback for the control of quadruped locomotion , 2008, 2008 IEEE International Conference on Robotics and Automation.

[45]  Jong Hyeon Park,et al.  Trajectory optimization with GA and control for quadruped robots , 2009 .

[46]  Yifei Chen,et al.  CPG driven locomotion control of quadruped robot , 2009, 2009 IEEE International Conference on Systems, Man and Cybernetics.

[47]  Gen Endo,et al.  Quadruped walking robots at Tokyo Institute of Technology , 2009, IEEE Robotics & Automation Magazine.

[48]  Auke Ijspeert,et al.  Modeling discrete and rhythmic movements through motor primitives: a review , 2010, Biological Cybernetics.

[49]  Ferdinando Cannella,et al.  Design of HyQ – a hydraulically and electrically actuated quadruped robot , 2011 .

[50]  Nikolaos G. Tsagarakis,et al.  A human-like walking for the COmpliant huMANoid COMAN based on CoM trajectory reconstruction from kinematic Motion Primitives , 2011, 2011 11th IEEE-RAS International Conference on Humanoid Robots.

[51]  Nikolaos G. Tsagarakis,et al.  Efficient human-like walking for the compliant huMANoid COMAN based on linematic Motion Primitives (kMPs) , 2012, 2012 IEEE International Conference on Robotics and Automation.

[52]  Nikolaos G. Tsagarakis,et al.  On the Kinematic Motion Primitives (kMPs) – Theory and Application , 2012, Front. Neurorobot..

[53]  Auke Jan Ijspeert,et al.  Towards dynamic trot gait locomotion: Design, control, and experiments with Cheetah-cub, a compliant quadruped robot , 2013, Int. J. Robotics Res..