A Recipe for Soft Fluidic Elastomer Robots

Abstract This work provides approaches to designing and fabricating soft fluidic elastomer robots. That is, three viable actuator morphologies composed entirely from soft silicone rubber are explored, and these morphologies are differentiated by their internal channel structure, namely, ribbed, cylindrical, and pleated. Additionally, three distinct casting-based fabrication processes are explored: lamination-based casting, retractable-pin-based casting, and lost-wax-based casting. Furthermore, two ways of fabricating a multiple DOF robot are explored: casting the complete robot as a whole and casting single degree of freedom (DOF) segments with subsequent concatenation. We experimentally validate each soft actuator morphology and fabrication process by creating multiple physical soft robot prototypes.

[1]  H. Tanaka,et al.  Applying a flexible microactuator to robotic mechanisms , 1992, IEEE Control Systems.

[2]  泰義 横小路,et al.  IEEE International Conference on Robotics and Automation , 1992 .

[3]  Blake Hannaford,et al.  Measurement and modeling of McKibben pneumatic artificial muscles , 1996, IEEE Trans. Robotics Autom..

[4]  G. Whitesides,et al.  Soft Lithography. , 1998, Angewandte Chemie.

[5]  Andrea J. Liu,et al.  Nonlinear dynamics: Jamming is not just cool any more , 1998, Nature.

[6]  Adam Morecki,et al.  Elephant trunk type elastic manipulator - a tool for bulk and liquid materials transportation , 1999, Robotica.

[7]  Pierre Lopez,et al.  Modeling and control of McKibben artificial muscle robot actuators , 2000 .

[8]  Darwin G. Caldwell,et al.  Bio-mimetic actuators: polymeric Pseudo Muscular Actuators and pneumatic Muscle Actuators for biological emulation , 2000 .

[9]  Dirk Lefeber,et al.  Pneumatic artificial muscles: Actuators for robotics and automation , 2002 .

[10]  Rob Buckingham,et al.  Snake arm robots , 2002 .

[11]  Ian A. Gravagne,et al.  Uniform regulation of a multi-section continuum manipulator , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[12]  Jonathan E. Clark,et al.  Fast and Robust: Hexapedal Robots via Shape Deposition Manufacturing , 2002 .

[13]  Ian D. Walker,et al.  Kinematics and the Implementation of an Elephant's Trunk Manipulator and Other Continuum Style Robots , 2003, J. Field Robotics.

[14]  Christopher D. Rahn,et al.  Design of an artificial muscle continuum robot , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[15]  C. Phillips,et al.  Modeling the Dynamic Characteristics of Pneumatic Muscle , 2003, Annals of Biomedical Engineering.

[16]  Ian D. Walker,et al.  Design and implementation of a multi-section continuum robot: Air-Octor , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[17]  Ian D. Walker,et al.  Field trials and testing of the OctArm continuum manipulator , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[18]  Kamal Youcef-Toumi,et al.  Design of Machines With Compliant Bodies for Biomimetic Locomotion in Liquid Environments , 2006 .

[19]  Chris Rogers,et al.  Caterpillar locomotion: A new model for soft- bodied climbing and burrowing robots , 2006 .

[20]  Koichi Suzumori,et al.  A Bending Pneumatic Rubber Actuator Realizing Soft-bodied Manta Swimming Robot , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[21]  Ian D. Walker,et al.  Soft robotics: Biological inspiration, state of the art, and future research , 2008 .

[22]  Sung-Hoon Ahn,et al.  Review of manufacturing processes for soft biomimetic robots , 2009 .

[23]  John Kenneth Salisbury,et al.  Configuration Tracking for Continuum Manipulators With Coupled Tendon Drive , 2009, IEEE Transactions on Robotics.

[24]  Robert J. Wood,et al.  Micro artificial muscle fiber using NiTi spring for soft robotics , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[25]  Robert J. Wood,et al.  Peristaltic locomotion with antagonistic actuators in soft robotics , 2010, 2010 IEEE International Conference on Robotics and Automation.

[26]  Matteo Cianchetti,et al.  Study and fabrication of bioinspired Octopus arm mockups tested on a multipurpose platform , 2010, 2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics.

[27]  Nikolaus Correll,et al.  Soft Autonomous Materials - Using Active Elasticity and Embedded Distributed Computation , 2010, ISER.

[28]  Heinrich M. Jaeger,et al.  Universal robotic gripper based on the jamming of granular material , 2010, Proceedings of the National Academy of Sciences.

[29]  Xin Chen,et al.  Soft Mobile Robots with On-Board Chemical Pressure Generation , 2011, ISRR.

[30]  Kenneth O. Stanley,et al.  Evolving a diversity of virtual creatures through novelty search and local competition , 2011, GECCO '11.

[31]  Cagdas D. Onal,et al.  Soft robot actuators using energy-efficient valves controlled by electropermanent magnets , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[32]  Filip Ilievski,et al.  Multigait soft robot , 2011, Proceedings of the National Academy of Sciences.

[33]  B Mazzolai,et al.  An octopus-bioinspired solution to movement and manipulation for soft robots , 2011, Bioinspiration & biomimetics.

[34]  Filip Ilievski,et al.  Soft robotics for chemists. , 2011, Angewandte Chemie.

[35]  Charles Kim,et al.  Design of soft robotic actuators using fluid-filled fiber-reinforced elastomeric enclosures in parallel combinations , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[36]  C. D. Onal,et al.  A modular approach to soft robots , 2012, 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob).

[37]  Stephen A. Morin,et al.  Camouflage and Display for Soft Machines , 2012, Science.

[38]  Paolo Dario,et al.  Soft Robot Arm Inspired by the Octopus , 2012, Adv. Robotics.

[39]  Jamie L. Branch,et al.  Robotic Tentacles with Three‐Dimensional Mobility Based on Flexible Elastomers , 2013, Advanced materials.

[40]  Tianjiang Zheng,et al.  Design, modeling and control of a pneumatically actuated manipulator inspired by biological continuum structures , 2013, Bioinspiration & biomimetics.

[41]  G. Whitesides,et al.  Soft Machines That are Resistant to Puncture and That Self Seal , 2013, Advanced materials.

[42]  George M. Whitesides,et al.  Towards a soft pneumatic glove for hand rehabilitation , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[43]  Kyu-Jin Cho,et al.  Omega-Shaped Inchworm-Inspired Crawling Robot With Large-Index-and-Pitch (LIP) SMA Spring Actuators , 2013, IEEE/ASME Transactions on Mechatronics.

[44]  Hod Lipson,et al.  Unshackling evolution: evolving soft robots with multiple materials and a powerful generative encoding , 2013, GECCO '13.

[45]  Tao Deng,et al.  Visual servo control of cable-driven soft robotic manipulator , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[46]  Daniela Rus,et al.  Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot , 2013, Bioinspiration & biomimetics.

[47]  Robert J. Wood,et al.  Mechanically programmable bend radius for fiber-reinforced soft actuators , 2013, 2013 16th International Conference on Advanced Robotics (ICAR).

[48]  Oliver Brock,et al.  A compliant hand based on a novel pneumatic actuator , 2013, 2013 IEEE International Conference on Robotics and Automation.

[49]  Takuya Umedachi,et al.  Highly deformable 3-D printed soft robot generating inching and crawling locomotions with variable friction legs , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[50]  Stephen A. Morin,et al.  Using explosions to power a soft robot. , 2013, Angewandte Chemie.

[51]  CianchettiMatteo,et al.  Soft Robotics Technologies to Address Shortcomings in Today's Minimally Invasive Surgery: The STIFF-FLOP Approach , 2014 .

[52]  Daniela Rus,et al.  Whole arm planning for a soft and highly compliant 2D robotic manipulator , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[53]  TrimmerBarry A Journal of Soft Robotics: Why Now? , 2014 .

[54]  Robert J. Wood,et al.  A Resilient, Untethered Soft Robot , 2014 .

[55]  Oliver Brock,et al.  A Novel Type of Compliant, Underactuated Robotic Hand for Dexterous Grasping , 2014, Robotics: Science and Systems.

[56]  Nikolaus Correll,et al.  Shape Change Through Programmable Stiffness , 2014, ISER.

[57]  MajidiCarmel,et al.  Soft Robotics: A Perspective—Current Trends and Prospects for the Future , 2014 .

[58]  George M. Whitesides,et al.  A Hybrid Combining Hard and Soft Robots , 2014 .

[59]  Radhika Nagpal,et al.  Design and control of a bio-inspired soft wearable robotic device for ankle–foot rehabilitation , 2014, Bioinspiration & biomimetics.

[60]  Robert J. Wood,et al.  Pneumatic Energy Sources for Autonomous and Wearable Soft Robotics , 2014 .

[61]  Robert J. Wood,et al.  An untethered jumping soft robot , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[62]  LipsonHod,et al.  Challenges and Opportunities for Design, Simulation, and Fabrication of Soft Robots , 2014 .

[63]  G. Whitesides,et al.  Pneumatic Networks for Soft Robotics that Actuate Rapidly , 2014 .

[64]  Cagdas D. Onal,et al.  Design and control of a soft and continuously deformable 2D robotic manipulation system , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[65]  Cecilia Laschi,et al.  Bioinspired Soft Actuation System Using Shape Memory Alloys , 2014 .

[66]  Daniela Rus,et al.  Hydraulic Autonomous Soft Robotic Fish for 3D Swimming , 2014, ISER.

[67]  T. Nanayakkara,et al.  Soft Robotics Technologies to Address Shortcomings in Today ’ s Minimally Invasive Surgery : The STIFF-FLOP Approach , 2014 .

[68]  Daniela Rus,et al.  Autonomous Soft Robotic Fish Capable of Escape Maneuvers Using Fluidic Elastomer Actuators. , 2014, Soft robotics.

[69]  M. McEvoy,et al.  Thermoplastic variable stiffness composites with embedded, networked sensing, actuation, and control , 2015 .

[70]  Andrew D. Marchese Design, fabrication, and control of soft robots with fluidic elastomer actuators , 2015 .

[71]  D. Rus,et al.  Design, fabrication and control of soft robots , 2015, Nature.

[72]  Sanlin S. Robinson,et al.  Poroelastic Foams for Simple Fabrication of Complex Soft Robots , 2015, Advanced materials.

[73]  Mehmet Remzi Dogar,et al.  Haptic identification of objects using a modular soft robotic gripper , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[74]  Daniela Rus,et al.  Autonomous Object Manipulation Using a Soft Planar Grasping Manipulator , 2015, Soft robotics.

[75]  Jamie Paik,et al.  Stretchable Materials for Robust Soft Actuators towards Assistive Wearable Devices , 2016, Scientific Reports.

[76]  Robert J. Wood,et al.  Soft Robotic Grippers for Biological Sampling on Deep Reefs , 2016, Soft robotics.

[77]  Daniela Rus,et al.  Design, kinematics, and control of a soft spatial fluidic elastomer manipulator , 2016, Int. J. Robotics Res..

[78]  L. Paez,et al.  Design and Analysis of a Soft Pneumatic Actuator with Origami Shell Reinforcement , 2016 .

[79]  Deepa Sritharan,et al.  Fabrication of a Miniature Paper-Based Electroosmotic Actuator , 2016, Polymers.

[80]  SalamonPeter,et al.  Versatile and Dexterous Soft Robotic Leg System for Untethered Operations , 2016 .

[81]  YapHong Kai,et al.  High-Force Soft Printable Pneumatics for Soft Robotic Applications , 2016 .

[82]  Huichan Zhao,et al.  Curvature control of soft orthotics via low cost solid-state optics , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[83]  Florian Winter,et al.  Biomimetic Spider Leg Joints: A Review from Biomechanical Research to Compliant Robotic Actuators , 2016, Robotics.

[84]  Jamie Paik,et al.  Modeling, Design, and Development of Soft Pneumatic Actuators with Finite Element Method   , 2016 .

[85]  Leon M. Headings,et al.  Multifunctional composites with intrinsic pressure actuation and prestress for morphing structures , 2016 .

[86]  MazzolaiBarbara,et al.  Sculpting Soft Machines , 2016 .

[87]  Fumiya Iida,et al.  Soft Manipulators and Grippers: A Review , 2016, Front. Robot. AI.

[88]  Daniela Rus,et al.  Dynamics and trajectory optimization for a soft spatial fluidic elastomer manipulator , 2016, Int. J. Robotics Res..

[89]  Kyu-Jin Cho,et al.  Soft Robotic Blocks: Introducing SoBL, a Fast-Build Modularized Design Block , 2016, IEEE Robotics & Automation Magazine.

[90]  Ross A. Knepper,et al.  A Helping Hand: Soft Orthosis with Integrated Optical Strain Sensors and EMG Control , 2016, IEEE Robotics & Automation Magazine.

[91]  J. Kedzierski,et al.  Microhydraulic Electrowetting Actuators , 2016, Journal of Microelectromechanical Systems.

[92]  Yigit Mengüç,et al.  Directly Fabricating Soft Robotic Actuators With an Open-Source 3-D Printer , 2017, IEEE Robotics and Automation Letters.

[93]  Nick Cramer,et al.  Digital Morphing Wing: Active Wing Shaping Concept Using Composite Lattice-Based Cellular Structures , 2016, Soft robotics.

[94]  Jennifer C. Case,et al.  Multi-mode strain and curvature sensors for soft robotic applications , 2017 .