Expander Graphs and their Applications

A major consideration we had in writing this survey was to make it accessible to mathematicians as well as to computer scientists, since expander graphs, the protagonists of our story, come up in numerous and often surprising contexts in both fields. But, perhaps, we should start with a few words about graphs in general. They are, of course, one of the prime objects of study in Discrete Mathematics. However, graphs are among the most ubiquitous models of both natural and human-made structures. In the natural and social sciences they model relations among species, societies, companies, etc. In computer science, they represent networks of communication, data organization, computational devices as well as the flow of computation, and more. In mathematics, Cayley graphs are useful in Group Theory. Graphs carry a natural metric and are therefore useful in Geometry, and though they are “just” one-dimensional complexes, they are useful in certain parts of Topology, e.g. Knot Theory. In statistical physics, graphs can represent local connections between interacting parts of a system, as well as the dynamics of a physical process on such systems. The study of these models calls, then, for the comprehension of the significant structural properties of the relevant graphs. But are there nontrivial structural properties which are universally important? Expansion of a graph requires that it is simultaneously sparse and highly connected. Expander graphs were first defined by Bassalygo and Pinsker, and their existence first proved by Pinsker in the early ’70s. The property of being an expander seems significant in many of these mathematical, computational and physical contexts. It is not surprising that expanders are useful in the design and analysis of communication networks. What is less obvious is that expanders have surprising utility in other computational settings such as in the theory of error correcting codes and the theory of pseudorandomness. In mathematics, we will encounter e.g. their role in the study of metric embeddings, and in particular in work around the Baum-Connes Conjecture. Expansion is closely related to the convergence rates of Markov Chains, and so they play a key role in the study of Monte-Carlo algorithms in statistical mechanics and in a host of practical computational applications. The list of such interesting and fruitful connections goes on and on with so many applications we will not even

[1]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[2]  Richard W. Hamming,et al.  Error detecting and error correcting codes , 1950 .

[3]  E. Wigner On the Distribution of the Roots of Certain Symmetric Matrices , 1958 .

[4]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[5]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[6]  M. Murty Ramanujan Graphs , 1965 .

[7]  D. Kazhdan Connection of the dual space of a group with the structure of its close subgroups , 1967 .

[8]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[9]  J. Cheeger A lower bound for the smallest eigenvalue of the Laplacian , 1969 .

[10]  A. Bonami Étude des coefficients de Fourier des fonctions de $L^p(G)$ , 1970 .

[11]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[12]  M. Pinsker,et al.  On the complexity of a concentrator , 1973 .

[13]  W. Beckner Inequalities in Fourier analysis , 1975 .

[14]  Leslie G. Valiant,et al.  Graph-Theoretic Properties in computational Complexity , 1976, J. Comput. Syst. Sci..

[15]  Robert J. McEliece,et al.  New upper bounds on the rate of a code via the Delsarte-MacWilliams inequalities , 1977, IEEE Trans. Inf. Theory.

[16]  Volker Strassen,et al.  A Fast Monte-Carlo Test for Primality , 1977, SIAM J. Comput..

[17]  Jonathan L. Gross Every connected regular graph of even degree is a Schreier coset graph , 1977, J. Comb. Theory, Ser. B.

[18]  L. Lovász Combinatorial problems and exercises , 1979 .

[19]  Richard J. Lipton,et al.  Random walks, universal traversal sequences, and the complexity of maze problems , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[20]  M. Kerimov The theory of error-correcting codes☆ , 1980 .

[21]  M. Rabin Probabilistic algorithm for testing primality , 1980 .

[22]  B. McKay The expected eigenvalue distribution of a large regular graph , 1981 .

[23]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[24]  Zvi Galil,et al.  Explicit Constructions of Linear-Sized Superconcentrators , 1981, J. Comput. Syst. Sci..

[25]  János Komlós,et al.  The eigenvalues of random symmetric matrices , 1981, Comb..

[26]  Oliver Vornberger,et al.  The Complexity of Testing Whether a Graph is a Superconcentrator , 1981, Inf. Process. Lett..

[27]  G. A. Margulis,et al.  Explicit constructions of graphs without short cycles and low density codes , 1982, Comb..

[28]  P. Buser A note on the isoperimetric constant , 1982 .

[29]  Avi Wigderson,et al.  Superconcentrators, generalizers and generalized connectors with limited depth , 1983, STOC.

[30]  E. Szemerédi,et al.  O(n LOG n) SORTING NETWORK. , 1983 .

[31]  M. Gromov Filling Riemannian manifolds , 1983 .

[32]  J. Dodziuk Difference equations, isoperimetric inequality and transience of certain random walks , 1984 .

[33]  W. B. Johnson,et al.  Extensions of Lipschitz mappings into Hilbert space , 1984 .

[34]  R. M. Tanner Explicit Concentrators from Generalized N-Gons , 1984 .

[35]  N. Alon,et al.  il , , lsoperimetric Inequalities for Graphs , and Superconcentrators , 1985 .

[36]  Akira Maruoka,et al.  Expanders obtained from affine transformations , 1985, STOC '85.

[37]  J. Bourgain On lipschitz embedding of finite metric spaces in Hilbert space , 1985 .

[38]  Noga Alon,et al.  lambda1, Isoperimetric inequalities for graphs, and superconcentrators , 1985, J. Comb. Theory, Ser. B.

[39]  N. Alon Eigenvalues and expanders , 1986, Comb..

[40]  B. Bollobás Combinatorics: Set Systems, Hypergraphs, Families of Vectors and Combinatorial Probability , 1986 .

[41]  V. Milman,et al.  Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .

[42]  Mark Jerrum,et al.  Approximate Counting, Uniform Generation and Rapidly Mixing Markov Chains , 1987, WG.

[43]  Andrei Z. Broder,et al.  On the second eigenvalue of random regular graphs , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[44]  János Komlós,et al.  Deterministic simulation in LOGSPACE , 1987, STOC.

[45]  Eli Upfal,et al.  How to share memory in a distributed system , 1984, JACM.

[46]  Noga Alon,et al.  Explicit construction of linear sized tolerant networks , 1988, Discret. Math..

[47]  Nathan Linial,et al.  The influence of variables on Boolean functions , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[48]  Mark Jerrum,et al.  Approximate Counting, Uniform Generation and Rapidly Mixing Markov Chains , 1987, International Workshop on Graph-Theoretic Concepts in Computer Science.

[49]  Eitan M. Gurari,et al.  Introduction to the theory of computation , 1989 .

[50]  J. G. Pierce,et al.  Geometric Algorithms and Combinatorial Optimization , 2016 .

[51]  Eli Upfal,et al.  Constructing disjoint paths on expander graphs , 1987, Comb..

[52]  Bruce M. Maggs,et al.  On-line algorithms for path selection in a nonblocking network , 1990, STOC '90.

[53]  László Lovász,et al.  Approximating clique is almost NP-complete , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[54]  Noga Alon,et al.  Construction Of Asymptotically Good Low-rate Error-correcting Codes Through Pseudo-random Graphs , 1991, Proceedings. 1991 IEEE International Symposium on Information Theory.

[55]  Noga Alon,et al.  On the second eigenvalue of a graph , 1991, Discret. Math..

[56]  Joel Friedman,et al.  The Spectra of Infinite Hypertrees , 1991, SIAM J. Comput..

[57]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[58]  Noga Alon,et al.  Construction of asymptotically good low-rate error-correcting codes through pseudo-random graphs , 1992, IEEE Trans. Inf. Theory.

[59]  Carsten Lund,et al.  Proof verification and hardness of approximation problems , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[60]  Benjamin Weiss,et al.  Groups and Expanders , 1992, Expanding Graphs.

[61]  Richard M. Wilson,et al.  A course in combinatorics , 1992 .

[62]  Piotr Berman,et al.  On the Complexity of Approximating the Independent Set Problem , 1989, Inf. Comput..

[63]  J. Friedman Some geometric aspects of graphs and their eigenfunctions , 1993 .

[64]  Noam Nisan,et al.  Pseudorandomness for network algorithms , 1994, STOC '94.

[65]  Daniel A. Spielman,et al.  Expander codes , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[66]  Moshe Morgenstern,et al.  Existence and Explicit Constructions of q + 1 Regular Ramanujan Graphs for Every Prime Power q , 1994, J. Comb. Theory, Ser. B.

[67]  David R. Karger,et al.  Approximate graph coloring by semidefinite programming , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[68]  Alexander Lubotzky,et al.  Discrete groups, expanding graphs and invariant measures , 1994, Progress in mathematics.

[69]  Noga Alon,et al.  Random Cayley Graphs and Expanders , 1994, Random Struct. Algorithms.

[70]  Nabil Kahale,et al.  Eigenvalues and expansion of regular graphs , 1995, JACM.

[71]  Nathan Linial,et al.  The geometry of graphs and some of its algorithmic applications , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[72]  Daniel A. Spielman,et al.  Linear-time encodable and decodable error-correcting codes , 1995, STOC '95.

[73]  Avi Wigderson,et al.  On the second eigenvalue of hypergraphs , 1995, Comb..

[74]  C. Tracy,et al.  Mathematical Physics © Springer-Verlag 1996 On Orthogonal and Symplectic Matrix Ensembles , 1995 .

[75]  Yuval Roichman,et al.  Upper bound on the characters of the symmetric groups , 1996 .

[76]  Mark Jerrum,et al.  The Markov chain Monte Carlo method: an approach to approximate counting and integration , 1996 .

[77]  Phokion G. Kolaitis Hardness Of Approximations , 1996 .

[78]  A. Terras,et al.  Zeta functions of finite graphs and coverings, III , 1996 .

[79]  Noam Nisan,et al.  Randomness is Linear in Space , 1996, J. Comput. Syst. Sci..

[80]  Bruce M. Maggs,et al.  On-Line Algorithms for Path Selection in a Nonblocking Network , 1996, SIAM J. Comput..

[81]  Dorit S. Hochbaum,et al.  Approximation Algorithms for NP-Hard Problems , 1996 .

[82]  Oded Goldreich,et al.  A Sample of Samplers - A Computational Perspective on Sampling (survey) , 1997, Electron. Colloquium Comput. Complex..

[83]  Michel Deza,et al.  Geometry of cuts and metrics , 2009, Algorithms and combinatorics.

[84]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[85]  Dorit S. Hochba,et al.  Approximation Algorithms for NP-Hard Problems , 1997, SIGA.

[86]  Peter Winkler,et al.  Mixing times , 1997, Microsurveys in Discrete Probability.

[87]  Sanjeev Arora,et al.  Probabilistic checking of proofs: a new characterization of NP , 1998, JACM.

[88]  Alexander Lubotzky,et al.  Not Every Uniform Tree Covers Ramanujan Graphs , 1998, J. Comb. Theory, Ser. B.

[89]  D. Gillman A Chernoff bound for random walks on expander graphs , 1998, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[90]  Frank Thomson Leighton,et al.  Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms , 1999, JACM.

[91]  Eli Ben-Sasson,et al.  Short proofs are narrow-resolution made simple , 1999, Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317).

[92]  Avi Wigderson,et al.  Expanders That Beat the Eigenvalue Bound: Explicit Construction and Applications , 1999, Comb..

[93]  N. Wormald,et al.  Models of the , 2010 .

[94]  Alan M. Frieze,et al.  Static and Dynamic Path Selection on Expander Graphs: A Random Walk Approach , 1999, Random Struct. Algorithms.

[95]  J. Håstad Clique is hard to approximate withinn1−ε , 1999 .

[96]  Yehuda Shalom,et al.  Bounded generation and Kazhdan’s property (T) , 1999 .

[97]  Svante Janson,et al.  Random graphs , 2000, Wiley-Interscience series in discrete mathematics and optimization.

[98]  Michael Alekhnovich,et al.  Pseudorandom Generators in Propositional Proof Complexity , 2004, SIAM J. Comput..

[99]  N. Linial,et al.  Random Graph Coverings I , 2000 .

[100]  Svante Janson,et al.  Random graphs , 2000, ZOR Methods Model. Oper. Res..

[101]  Dana Randall,et al.  Sampling adsorbing staircase walks using a new Markov chain decomposition method , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[102]  Avi Wigderson,et al.  Entropy waves, the zig-zag graph product, and new constant-degree expanders and extractors , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[103]  H. M. Stark,et al.  Zeta Functions of Finite Graphs and Coverings , Part II , 2000 .

[104]  Russ Bubley,et al.  Randomized algorithms , 1995, CSUR.

[105]  Nathan Linial,et al.  Least-Distortion Euclidean Embeddings of Graphs: Products of Cycles and Expanders , 2000, J. Comb. Theory, Ser. B.

[106]  Peter Bro Miltersen,et al.  Are bitvectors optimal? , 2000, STOC '00.

[107]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[108]  Michael Alekhnovich,et al.  Lower bounds for polynomial calculus: non-binomial case , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[109]  Andrei Voronkov,et al.  Current Trends in Theoretical Computer Science , 2001 .

[110]  W. T. Gowers,et al.  RANDOM GRAPHS (Wiley Interscience Series in Discrete Mathematics and Optimization) , 2001 .

[111]  Satyanarayana V. Lokam Spectral Methods for Matrix Rigidity with Applications to Size-Depth Trade-offs and Communication Complexity , 2001, J. Comput. Syst. Sci..

[112]  Daniel A. Spielman,et al.  Improved low-density parity-check codes using irregular graphs and belief propagation , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[113]  Noga Alon,et al.  Semi-direct product in groups and zig-zag product in graphs: connections and applications , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[114]  Madhu Sudan,et al.  A Crash Course on Coding Theory , 2001 .

[115]  Ran Raz,et al.  Lower bounds for matrix product, in bounded depth circuits with arbitrary gates , 2001, STOC '01.

[116]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[117]  Avi Wigderson,et al.  Randomness conductors and constant-degree lossless expanders , 2002, STOC '02.

[118]  Nathan Linial Finite metric spaces: combinatorics, geometry and algorithms , 2002, SCG '02.

[119]  Tim Novikoff Asymptotic Behavior of the Random 3-Regular Bipartite Graph , 2002 .

[120]  Nathan Linial,et al.  Girth and euclidean distortion , 2002, STOC '02.

[121]  Noga Alon,et al.  Explicit unique-neighbor expanders , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[122]  Avi Wigderson,et al.  Expanders from symmetric codes , 2002, STOC '02.

[123]  Jiri Matousek,et al.  Lectures on discrete geometry , 2002, Graduate texts in mathematics.

[124]  Nathan Linial,et al.  Random Graph Coverings I: General Theory and Graph Connectivity , 2002, Comb..

[125]  A. L. O N On the edge-expansion of graphs , 2002 .

[126]  M. Minerva Semi-direct product in groups and Zig-zag product in graphs: Connections and applications , 2002 .

[127]  Jirí Matousek,et al.  Random lifts of graphs: Independence and chromatic number , 2002, Random Struct. Algorithms.

[128]  A Markov chain for Steiner triple systems , 2002 .

[129]  J. R. Lee,et al.  Embedding the diamond graph in Lp and dimension reduction in L1 , 2004, math/0407520.

[130]  I. Bárány LECTURES ON DISCRETE GEOMETRY (Graduate Texts in Mathematics 212) , 2003 .

[131]  Giuliana P. Davidoff,et al.  Elementary number theory, group theory, and Ramanujan graphs , 2003 .

[132]  Joel Friedman,et al.  A proof of Alon's second eigenvalue conjecture and related problems , 2004, ArXiv.

[133]  J. Friedman Relative expanders or weakly relatively Ramanujan graphs , 2003 .

[134]  Alain Valette,et al.  On the Baum-Connes Assembly Map for Discrete Groups , 2003 .

[135]  Alan Siegel A Historical Review of the Isoperimetric Theorem in 2-D , and its place in Elementary Plane Geometry , 2003 .

[136]  Martin Kassabov Kazhdan Constants for $SL_n(Z)$ , 2003 .

[137]  M. Gromov,et al.  Random walk in random groups , 2003 .

[138]  Noga Alon,et al.  Smaller Explicit Superconcentrators , 2003, Internet Math..

[139]  J. Thorpe Low-Density Parity-Check (LDPC) Codes Constructed from Protographs , 2003 .

[140]  Miklós Simonovits,et al.  How to compute the volume in high dimension? , 2003, Math. Program..

[141]  N. Linial,et al.  Lifts, Discrepancy and Nearly Optimal Spectral Gaps , 2003 .

[142]  P. Sarnak What is . . . An expander , 2004 .

[143]  Eric Vigoda,et al.  A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries , 2004, JACM.

[144]  Andrew Granville,et al.  It is easy to determine whether a given integer is prime , 2004 .

[145]  P. Indyk,et al.  Low-Distortion Embeddings of Finite Metric Spaces , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[146]  A. Nilli,et al.  Tight Estimates for Eigenvalues of Regular Graphs , 2004 .

[147]  Satish Rao,et al.  Expander flows, geometric embeddings and graph partitioning , 2004, STOC '04.

[148]  Avi Wigderson,et al.  A new family of Cayley expanders (?) , 2004, STOC '04.

[149]  Shlomo Hoory,et al.  On codes from hypergraphs , 2004, Eur. J. Comb..

[150]  Noga Alon,et al.  The Probabilistic Method, Second Edition , 2004 .

[151]  D. Lieberman,et al.  Fourier analysis , 2004, Journal of cataract and refractive surgery.

[152]  Kenneth Ward Church,et al.  Nonlinear Estimators and Tail Bounds for Dimension Reduction in l1 Using Cauchy Random Projections , 2006, J. Mach. Learn. Res..

[153]  Martin Kassabov,et al.  Kazhdan Constants for Sln(Z) , 2005, Int. J. Algebra Comput..

[154]  Noga Alon,et al.  Derandomized graph products , 1995, computational complexity.

[155]  Nisheeth K. Vishnoi,et al.  The Unique Games Conjecture, Integrality Gap for Cut Problems and Embeddability of Negative Type Metrics into l1 , 2005, FOCS.

[156]  A. Lubotzky,et al.  Explicit constructions of Ramanujan complexes of type Ãd , 2005, Eur. J. Comb..

[157]  Nathan Linial,et al.  Random Lifts Of Graphs: Perfect Matchings , 2005, Comb..

[158]  Shlomo Hoory,et al.  A lower bound on the spectral radius of the universal cover of a graph , 2005, J. Comb. Theory B.

[159]  Van H. Vu,et al.  Spectral norm of random matrices , 2005, STOC '05.

[160]  Nikolay Nikolov,et al.  A product decomposition for the classical quasisimple groups , 2005, math/0510173.

[161]  Omer Reingold,et al.  Undirected ST-connectivity in log-space , 2005, STOC '05.

[162]  Martin Kassabov,et al.  Symmetric groups and expander graphs , 2005 .

[163]  Yuval Rabani,et al.  ON THE HARDNESS OF APPROXIMATING MULTICUT AND SPARSEST-CUT , 2005, 20th Annual IEEE Conference on Computational Complexity (CCC'05).

[164]  Salil P. Vadhan,et al.  Derandomized Squaring of Graphs , 2005, APPROX-RANDOM.

[165]  Luca Trevisan,et al.  Pseudorandom Walks in Biregular Graphs and the RL vs. L Problem , 2005, Electron. Colloquium Comput. Complex..

[166]  Sebastian M. Cioaba On the extreme eigenvalues of regular graphs , 2006, J. Comb. Theory, Ser. B.

[167]  Toniann Pitassi,et al.  Monotone Circuits for the Majority Function , 2006, APPROX-RANDOM.

[168]  Nathan Linial,et al.  Random Lifts of Graphs: Edge Expansion , 2006, Comb. Probab. Comput..

[169]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[170]  A. Lubotzky,et al.  Finite simple groups as expanders. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[171]  Nathan Linial,et al.  On the expansion rate of Margulis expanders , 2006, J. Comb. Theory, Ser. B.

[172]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[173]  Nathan Linial,et al.  Lifts, Discrepancy and Nearly Optimal Spectral Gap* , 2006, Comb..

[174]  Alan M. Frieze,et al.  Hamilton cycles in random lifts of graphs , 2006, Eur. J. Comb..

[175]  Nathan Linial,et al.  Minors in lifts of graphs , 2006 .

[176]  David Zuckerman,et al.  Electronic Colloquium on Computational Complexity, Report No. 100 (2005) Linear Degree Extractors and the Inapproximability of MAX CLIQUE and CHROMATIC NUMBER , 2005 .

[177]  Toniann Pitassi,et al.  Rank Bounds and Integrality Gaps for Cutting Planes Procedures , 2006, Theory Comput..

[178]  Avi Wigderson,et al.  P , NP and mathematics – a computational complexity perspective , 2006 .

[179]  David Zuckerman Linear Degree Extractors and the Inapproximability of Max Clique and Chromatic Number , 2007, Theory Comput..

[180]  J. Friedman,et al.  THE NON-BACKTRACKING SPECTRUM OF THE UNIVERSAL COVER OF A GRAPH , 2007, 0712.0192.

[181]  Randall R. Holmes Linear Representations of Finite Groups , 2008 .

[182]  M. Nikolenko,et al.  Translated from Russian by , 2008 .

[183]  Arya Mazumdar,et al.  Codes on hypergraphs , 2008, 2008 IEEE International Symposium on Information Theory.

[184]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .