Inhibitory refinement of spatial frequency selectivity in single cells of the cat striate cortex

[1]  A. B. Bonds Role of Inhibition in the Specification of Orientation Selectivity of Cells in the Cat Striate Cortex , 1989, Visual Neuroscience.

[2]  D. Ferster Orientation selectivity of synaptic potentials in neurons of cat primary visual cortex , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[3]  J. P. Jones,et al.  Periodic simple cells in cat area 17. , 1984, Journal of neurophysiology.

[4]  K. D. De Valois,et al.  Spatial‐frequency‐specific inhibition in cat striate cortex cells. , 1983, The Journal of physiology.

[5]  K. Tanaka,et al.  Cross-Correlation Analysis of Interneuronal Connectivity in cat visual cortex. , 1981, Journal of neurophysiology.

[6]  J. M. Foley,et al.  Contrast masking in human vision. , 1980, Journal of the Optical Society of America.

[7]  E Kaplan,et al.  Effects of dark adaptation on spatial and temporal properties of receptive fields in cat lateral geniculate nucleus. , 1979, The Journal of physiology.

[8]  T. Wiesel,et al.  Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex , 1979, Nature.

[9]  D. Tolhurst,et al.  Interactions between spatial frequency channels , 1978, Vision Research.

[10]  J. Movshon,et al.  Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat's visual cortex. , 1978, The Journal of physiology.

[11]  Alan Peters,et al.  Smooth and sparsely‐spined stellate cells in the visual cortex of the rat: A study using a combined golgi‐electron microscope technique , 1978, The Journal of comparative neurology.

[12]  C. Ribak,et al.  Aspinous and sparsely-spinous stellate neurons in the visual cortex of rats contain glutamic acid decarboxylase , 1978, Journal of neurocytology.

[13]  K. D. Valois Spatial frequency adaptation can enhance contrast sensitivity , 1977, Vision Research.

[14]  Andrea McCarter,et al.  A spatial frequency analogue to mach bands , 1976, Vision Research.

[15]  O. Mitchell Effect of spatial frequency on the visibility of unstructured patterns. , 1976, Journal of the Optical Society of America.

[16]  P. O. Bishop,et al.  Orientation specificity of cells in cat striate cortex. , 1974, Journal of neurophysiology.

[17]  P. O. Bishop,et al.  Orientation specificity and response variability of cells in the striate cortex. , 1973, Vision research.

[18]  S. Levay,et al.  Synaptic patterns in the visual cortex of the cat and monkey. Electron microscopy of Golgi Preparations , 1973, The Journal of comparative neurology.

[19]  L. Maffei,et al.  The visual cortex as a spatial frequency analyser. , 1973, Vision research.

[20]  A Vassilev,et al.  Adaptation to square-wave gratings: in search of the elusive third harmonic. , 1973, Vision research.

[21]  P. O. Bishop,et al.  Receptive fields of simple cells in the cat striate cortex , 1973, The Journal of physiology.

[22]  D. Tolhurst Adaptation to square‐wave gratings: inhibition between spatial frequency channels in the human visual system , 1972, The Journal of physiology.

[23]  C. Enroth-Cugell,et al.  The contrast sensitivity of retinal ganglion cells of the cat , 1966, The Journal of physiology.

[24]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.