Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera

RGB-D cameras provide both a color image and per-pixel depth estimates. The richness of their data and the recent development of low-cost sensors have combined to present an attractive opportunity for mobile robotics research. In this paper, we describe a system for visual odometry and mapping using an RGB-D camera, and its application to autonomous flight. By leveraging results from recent state-of-the-art algorithms and hardware, our system enables 3D flight in cluttered environments using only onboard sensor data. All computation and sensing required for local position control are performed onboard the vehicle, reducing the dependence on unreliable wireless links. We evaluate the effectiveness of our system for stabilizing and controlling a quadrotor micro air vehicle, demonstrate its use for constructing detailed 3D maps of an indoor environment, and discuss its limitations.

[1]  Hans P. Moravec Obstacle avoidance and navigation in the real world by a seeing robot rover , 1980 .

[2]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using unit quaternions , 1987 .

[3]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[4]  Andrew W. Fitzgibbon,et al.  Bundle Adjustment - A Modern Synthesis , 1999, Workshop on Vision Algorithms.

[5]  Jonathan M. Garibaldi,et al.  Fast, unconstrained camera motion estimation from stereo without tracking and robust statistics , 2002, 7th International Conference on Control, Automation, Robotics and Vision, 2002. ICARCV 2002..

[6]  Gilman E. S. Toombes,et al.  Preemptive RANSAC for Live Structure and Motion Estimation , 2003 .

[7]  Gordon Wyeth,et al.  Helicopter automation using a low-cost sensing system , 2003 .

[8]  Ezio Malis,et al.  Improving vision-based control using efficient second-order minimization techniques , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[9]  James R. Bergen,et al.  Visual odometry , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[10]  David Nistér,et al.  Preemptive RANSAC for live structure and motion estimation , 2005, Machine Vision and Applications.

[11]  Edwin Olson,et al.  Fast iterative alignment of pose graphs with poor initial estimates , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[12]  David Nistér,et al.  Scalable Recognition with a Vocabulary Tree , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[13]  Steven M. Seitz,et al.  Photo tourism: exploring photo collections in 3D , 2006, ACM Trans. Graph..

[14]  Tom Drummond,et al.  Machine Learning for High-Speed Corner Detection , 2006, ECCV.

[15]  Wolfram Burgard,et al.  A Tree Parameterization for Efficiently Computing Maximum Likelihood Maps using Gradient Descent , 2007, Robotics: Science and Systems.

[16]  Wolfram Burgard,et al.  Efficient estimation of accurate maximum likelihood maps in 3D , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[17]  Kurt Konolige,et al.  Large-Scale Visual Odometry for Rough Terrain , 2007, ISRR.

[18]  Jan-Michael Frahm,et al.  Detailed Real-Time Urban 3D Reconstruction from Video , 2007, International Journal of Computer Vision.

[19]  Gaurav S. Sukhatme,et al.  AN EXPERIMENTAL STUDY OF AERIAL STEREO VISUAL ODOMETRY , 2007 .

[20]  Andrew Howard,et al.  Real-time stereo visual odometry for autonomous ground vehicles , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[21]  Wolfram Burgard,et al.  Visual SLAM for Flying Vehicles , 2008, IEEE Transactions on Robotics.

[22]  Frank Dellaert,et al.  Incremental smoothing and mapping , 2008 .

[23]  Nicholas Roy,et al.  Planning in information space for a quadrotor helicopter in a GPS-denied environment , 2008, 2008 IEEE International Conference on Robotics and Automation.

[24]  Frank Dellaert,et al.  iSAM: Incremental Smoothing and Mapping , 2008, IEEE Transactions on Robotics.

[25]  Larry H. Matthies,et al.  Robust and Efficient Stereo Feature Tracking for Visual Odometry , 2008, 2008 IEEE International Conference on Robotics and Automation.

[26]  Vincent Lepetit,et al.  Keypoint Signatures for Fast Learning and Recognition , 2008, ECCV.

[27]  Soon-Jo Chung,et al.  Mono-vision corner SLAM for indoor navigation , 2008, 2008 IEEE International Conference on Electro/Information Technology.

[28]  Ian D. Reid,et al.  A Constant-Time Efficient Stereo SLAM System , 2009, BMVC.

[29]  Nicholas Roy,et al.  Autonomous Flight in Unknown Indoor Environments , 2009 .

[30]  P. Newman,et al.  Navigating , Recognising and Describing Urban Spaces With Vision and Laser , 2009 .

[31]  Wolfram Burgard,et al.  Towards a navigation system for autonomous indoor flying , 2009, 2009 IEEE International Conference on Robotics and Automation.

[32]  Paul Newman,et al.  Navigating, Recognizing and Describing Urban Spaces With Vision and Lasers , 2009, Int. J. Robotics Res..

[33]  G. Gerhart,et al.  Stereo vision and laser odometry for autonomous helicopters in GPS-denied indoor environments , 2009 .

[34]  Jonathan P. How,et al.  Vision-based guidance and control of a hovering vehicle in unknown, GPS-denied environments , 2009, 2009 IEEE International Conference on Robotics and Automation.

[35]  Kurt Konolige,et al.  Sparse Sparse Bundle Adjustment , 2010, BMVC.

[36]  Roland Siegwart,et al.  Vision based MAV navigation in unknown and unstructured environments , 2010, 2010 IEEE International Conference on Robotics and Automation.

[37]  Dieter Fox,et al.  RGB-D Mapping: Using Depth Cameras for Dense 3D Modeling of Indoor Environments , 2010, ISER.

[38]  Vijay Kumar,et al.  Autonomous multi-floor indoor navigation with a computationally constrained MAV , 2011, 2011 IEEE International Conference on Robotics and Automation.

[39]  Marc Pollefeys,et al.  PIXHAWK: A system for autonomous flight using onboard computer vision , 2011, 2011 IEEE International Conference on Robotics and Automation.