Basal ganglia contributions to adaptive navigation

[1]  S. Mizumori A Context for Hippocampal Place Cells during Learning , 2008 .

[2]  David M. Smith,et al.  Hippocampal and neocortical interactions during context discrimination: Electrophysiological evidence from the rat , 2007, Hippocampus.

[3]  Oxana Eschenko,et al.  Non-commercial Research and Educational Use including without Limitation Use in Instruction at Your Institution, Sending It to Specific Colleagues That You Know, and Providing a Copy to Your Institution's Administrator. All Other Uses, Reproduction and Distribution, including without Limitation Comm , 2022 .

[4]  Ann M Graybiel,et al.  Oscillations of local field potentials in the rat dorsal striatum during spontaneous and instructed behaviors. , 2007, Journal of neurophysiology.

[5]  S. Mizumori,et al.  Immediate early gene activation in hippocampus and dorsal striatum: Effects of explicit place and response training , 2007, Neurobiology of Learning and Memory.

[6]  P. Mitra,et al.  Learning-related coordination of striatal and hippocampal theta rhythms during acquisition of a procedural maze task , 2007, Proceedings of the National Academy of Sciences.

[7]  M. Millan,et al.  Selective blockade of dopamine D3 versus D2 receptors enhances frontocortical cholinergic transmission and social memory in rats: a parallel neurochemical and behavioural analysis , 2007, Journal of neurochemistry.

[8]  Eric A. Zilli,et al.  Hippocampal CA1 spiking during encoding and retrieval: Relation to theta phase , 2007, Neurobiology of Learning and Memory.

[9]  David M. Smith,et al.  Hippocampal place cells, context, and episodic memory , 2006, Hippocampus.

[10]  M. Bouton,et al.  Contextual and Temporal Modulation of Extinction: Behavioral and Biological Mechanisms , 2006, Biological Psychiatry.

[11]  Bruce L. McNaughton,et al.  Path integration and the neural basis of the 'cognitive map' , 2006, Nature Reviews Neuroscience.

[12]  N. Lemon,et al.  Dopamine D1/D5 Receptors Gate the Acquisition of Novel Information through Hippocampal Long-Term Potentiation and Long-Term Depression , 2006, The Journal of Neuroscience.

[13]  Torkel Hafting,et al.  Conjunctive Representation of Position, Direction, and Velocity in Entorhinal Cortex , 2006, Science.

[14]  S. Mizumori,et al.  Specific changes in hippocampal spatial codes predict spatial working memory performance , 2006, Behavioural Brain Research.

[15]  S. Mizumori,et al.  Context-dependent modulation by D(1) receptors: differential effects in hippocampus and striatum. , 2006, Behavioral neuroscience.

[16]  David M. Smith,et al.  Learning-Related Development of Context-Specific Neuronal Responses to Places and Events: The Hippocampal Role in Context Processing , 2006, The Journal of Neuroscience.

[17]  Bruce L. McNaughton,et al.  Progressive Transformation of Hippocampal Neuronal Representations in “Morphed” Environments , 2005, Neuron.

[18]  T. Hafting,et al.  Microstructure of a spatial map in the entorhinal cortex , 2005, Nature.

[19]  J. Lisman,et al.  The Hippocampal-VTA Loop: Controlling the Entry of Information into Long-Term Memory , 2005, Neuron.

[20]  S. Mizumori,et al.  Parallel processing across neural systems: Implications for a multiple memory system hypothesis , 2004, Neurobiology of Learning and Memory.

[21]  H. Eichenbaum,et al.  Oscillatory Entrainment of Striatal Neurons in Freely Moving Rats , 2004, Neuron.

[22]  S. Mizumori,et al.  Context-dependent reorganization of spatial and movement representations by simultaneously recorded hippocampal and striatal neurons during performance of allocentric and egocentric tasks. , 2004, Behavioral neuroscience.

[23]  E. Kandel,et al.  Increased Attention to Spatial Context Increases Both Place Field Stability and Spatial Memory , 2004, Neuron.

[24]  B. Knowlton,et al.  An implicit learning task activates medial temporal lobe in patients with Parkinson's disease. , 2004, Behavioral neuroscience.

[25]  W. K. Cullen,et al.  Dopamine-dependent facilitation of LTP induction in hippocampal CA1 by exposure to spatial novelty , 2003, Nature Neuroscience.

[26]  Roland E. Suri,et al.  TD models of reward predictive responses in dopamine neurons , 2002, Neural Networks.

[27]  A. Nieoullon Dopamine and the regulation of cognition and attention , 2002, Progress in Neurobiology.

[28]  N. Mercuri,et al.  Intrinsic membrane properties and synaptic inputs regulating the firing activity of the dopamine neurons , 2002, Behavioural Brain Research.

[29]  Charles J. Wilson,et al.  Corticostriatal combinatorics: the implications of corticostriatal axonal arborizations. , 2002, Journal of neurophysiology.

[30]  T. Robbins,et al.  Enhanced or impaired cognitive function in Parkinson's disease as a function of dopaminergic medication and task demands. , 2001, Cerebral cortex.

[31]  J. Lisman,et al.  Hippocampus as comparator: Role of the two input and two output systems of the hippocampus in selection and registration of information , 2001, Hippocampus.

[32]  J. Lisman,et al.  Storage, recall, and novelty detection of sequences by the hippocampus: Elaborating on the SOCRATIC model to account for normal and aberrant effects of dopamine , 2001, Hippocampus.

[33]  R. Morris,et al.  Episodic-like memory in animals: psychological criteria, neural mechanisms and the value of episodic-like tasks to investigate animal models of neurodegenerative disease. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[34]  E. Maguire,et al.  A Temporoparietal and Prefrontal Network for Retrieving the Spatial Context of Lifelike Events , 2001, NeuroImage.

[35]  S. Mizumori,et al.  Temporary Inactivation of the Retrosplenial Cortex Causes a Transient Reorganization of Spatial Coding in the Hippocampus , 2001, The Journal of Neuroscience.

[36]  R. O’Reilly,et al.  Conjunctive representations in learning and memory: principles of cortical and hippocampal function. , 2001, Psychological review.

[37]  Roland E. Suri,et al.  Temporal Difference Model Reproduces Anticipatory Neural Activity , 2001, Neural Computation.

[38]  Arne D. Ekstrom,et al.  Dynamics of Hippocampal Ensemble Activity Realignment: Time versus Space , 2000, The Journal of Neuroscience.

[39]  S. Mizumori,et al.  Location and head direction representation in the dorsal striatum of rats , 2000, Psychobiology.

[40]  S. Sealfon,et al.  Dopamine receptors: from structure to behavior , 2000, Trends in Neurosciences.

[41]  Stefan Leutgeb,et al.  A neural systems analysis of adaptive navigation , 2000, Molecular Neurobiology.

[42]  F. Tarazi,et al.  Comparative postnatal development of dopamine D1, D2 and D4 receptors in rat forebrain , 2000, International Journal of Developmental Neuroscience.

[43]  J. Ihalainen,et al.  Comparison of dopamine and noradrenaline release in mouse prefrontal cortex, striatum and hippocampus using microdialysis , 1999, Neuroscience Letters.

[44]  R. Reep,et al.  Topographic organization of the striatal and thalamic connections of rat medial agranular cortex , 1999, Brain Research.

[45]  S. Mizumori,et al.  Excitotoxic Septal Lesions Result in Spatial Memory Deficits and Altered Flexibility of Hippocampal Single-Unit Representations , 1999, The Journal of Neuroscience.

[46]  S. Mizumori,et al.  Function of the nucleus accumbens within the context of the larger striatal system , 1999, Psychobiology.

[47]  Y Kaneoke,et al.  Multisecond oscillations in firing rate in the basal ganglia: robust modulation by dopamine receptor activation and anesthesia. , 1999, Journal of neurophysiology.

[48]  N. White,et al.  Parallel Information Processing in the Dorsal Striatum: Relation to Hippocampal Function , 1999, The Journal of Neuroscience.

[49]  E. Levin,et al.  Ventral hippocampal dopamine D1 and D2 systems and spatial working memory in rats , 1999, Neuroscience.

[50]  G Buzsáki,et al.  Sustained activation of hippocampal pyramidal cells by ‘space clamping’ in a running wheel , 1999, The European journal of neuroscience.

[51]  J. Hollerman,et al.  Dopamine neurons report an error in the temporal prediction of reward during learning , 1998, Nature Neuroscience.

[52]  Charles J. Wilson,et al.  Membrane potential synchrony of simultaneously recorded striatal spiny neurons in vivo , 1998, Nature.

[53]  O. Paulsen,et al.  A model of hippocampal memory encoding and retrieval: GABAergic control of synaptic plasticity , 1998, Trends in Neurosciences.

[54]  H. Sequeira,et al.  Expression of c-fos in bulbar nuclei involved in cardiovascular control following the electrical stimulation of sensorimotor cortex in the rat , 1997, Neuroscience Letters.

[55]  W. Schultz Dopamine neurons and their role in reward mechanisms , 1997, Current Opinion in Neurobiology.

[56]  Peter Dayan,et al.  A Neural Substrate of Prediction and Reward , 1997, Science.

[57]  D. Joel,et al.  The effects of electrolytic lesion to the shell subterritory of the nucleus accumbens on delayed non-matching-to-sample and four-arm baited eight-arm radial-maze tasks. , 1997, Behavioral neuroscience.

[58]  M. Shapiro,et al.  Hippocampal place fields are altered by the removal of single visual cues in a distance-dependent manner. , 1997, Behavioral neuroscience.

[59]  C. Colby,et al.  Spatial representations for action in parietal cortex. , 1996, Brain research. Cognitive brain research.

[60]  J. Seamans,et al.  Differential effects of lidocaine infusions into the ventral CA1/subiculum or the nucleus accumbens on the acquisition and retention of spatial information , 1996, Behavioural Brain Research.

[61]  J. Brioni,et al.  Spatial memory impairment induced by lesion of the mesohippocampal dopaminergic system in the rat , 1996, Neuroscience.

[62]  Jennifer A. Mangels,et al.  A Neostriatal Habit Learning System in Humans , 1996, Science.

[63]  J. O’Keefe,et al.  Geometric determinants of the place fields of hippocampal neurons , 1996, Nature.

[64]  P. Calabresi,et al.  The corticostriatal projection: from synaptic plasticity to dysfunctions of the basal ganglia , 1996, Trends in Neurosciences.

[65]  W E Skaggs,et al.  Interactions between location and task affect the spatial and directional firing of hippocampal neurons , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[66]  B. K. Hartman,et al.  Distribution of pontomesencephalic cholinergic neurons projecting to substantia nigra differs significantly from those projecting to ventral tegmental area , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[67]  L. Swanson,et al.  Evidence for a hypothalamothalamocortical circuit mediating pheromonal influences on eye and head movements. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[68]  S. T. Kitai,et al.  Glutamatergic and cholinergic inputs from the pedunculopontine tegmental nucleus to dopamine neurons in the substantia nigra pars compacta , 1995, Neuroscience Research.

[69]  Mark G. Packard,et al.  Anterograde and retrograde tracing of projections from the ventral tegmental area to the hippocampal formation in the rat , 1994, Brain Research Bulletin.

[70]  W. Schultz,et al.  Importance of unpredictability for reward responses in primate dopamine neurons. , 1994, Journal of neurophysiology.

[71]  A R Cools,et al.  Spatial localization in the Morris water maze in rats: acquisition is affected by intra-accumbens injections of the dopaminergic antagonist haloperidol. , 1994, Behavioral neuroscience.

[72]  A. Lavoie,et al.  Spatial, movement- and reward-sensitive discharge by medial ventral striatum neurons of rats , 1994, Brain Research.

[73]  Steven W. Johnson,et al.  Apamin increases NMDA-induced burst-firing of rat mesencephalic dopamine neurons , 1993, Brain Research.

[74]  J. D. McGaugh,et al.  Interaction of cholinergic-dopaminergic systems in the regulation of memory storage in aversively motivated learning tasks , 1993, Brain Research.

[75]  S. Wiener Spatial and behavioral correlates of striatal neurons in rats performing a self-initiated navigation task , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[76]  P. Andersen,et al.  Spatial learning impairment parallels the magnitude of dorsal hippocampal lesions, but is hardly present following ventral lesions , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[77]  B L McNaughton,et al.  Dynamics of the hippocampal ensemble code for space. , 1993, Science.

[78]  A. Graybiel,et al.  Two input systems for body representations in the primate striatal matrix: experimental evidence in the squirrel monkey , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[79]  W. Schultz,et al.  Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[80]  W. Schultz,et al.  Role of primate basal ganglia and frontal cortex in the internal generation of movements , 1992, Experimental Brain Research.

[81]  D. Grandy,et al.  Distribution of D5 dopamine receptor mRNA in rat brain , 1992, Neuroscience Letters.

[82]  M. Packard,et al.  Dissociation of hippocampus and caudate nucleus memory systems by posttraining intracerebral injection of dopamine agonists , 1991 .

[83]  G E Alexander,et al.  Movement-related neuronal activity selectively coding either direction or muscle pattern in three motor areas of the monkey. , 1990, Journal of neurophysiology.

[84]  M. Kimura Behaviorally contingent property of movement-related activity of the primate putamen. , 1990, Journal of neurophysiology.

[85]  R. Reep,et al.  Topographic organization in the corticocortical connections of medial agranular cortex in rats , 1990, The Journal of comparative neurology.

[86]  A. Mcgeorge,et al.  The organization of the projection from the cerebral cortex to the striatum in the rat , 1989, Neuroscience.

[87]  B. McNaughton,et al.  Preserved spatial coding in hippocampal CA1 pyramidal cells during reversible suppression of CA3c output: evidence for pattern completion in hippocampus , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[88]  M. Packard,et al.  Memory facilitation produced by dopamine agonists: Role of receptor subtype and mnemonic requirements , 1989, Pharmacology Biochemistry and Behavior.

[89]  C. A. Castro,et al.  Spatial selectivity of rat hippocampal neurons: dependence on preparedness for movement. , 1989, Science.

[90]  O. Hikosaka,et al.  Functional properties of monkey caudate neurons. III. Activities related to expectation of target and reward. , 1989, Journal of neurophysiology.

[91]  A. Śmiałowski,et al.  Functional supersensitivity of the hippocampal dopaminergic system after prolonged treatment with haloperidol , 1989, Pharmacology Biochemistry and Behavior.

[92]  T. Robbins,et al.  The effects of ibotenic acid lesions of the nucleus accumbens on spatial learning and extinction in the rat , 1989, Behavioural Brain Research.

[93]  M. Bijak,et al.  Excitatory and inhibitory action of dopamine on hippocampal neurons in vitro. Involvement of D2 and D1 receptors , 1987, Neuroscience.

[94]  R. T. Watson,et al.  Efferent Connections of the Rostral Portion of Medial Agranular Cortex in Rats , 1987, Brain Research Bulletin.

[95]  R. Muller,et al.  The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[96]  R. Spencer,et al.  A cholinergic projection to the rat substantia nigra from the pedunculopontine tegmental nucleus , 1987, Brain Research.

[97]  G. Mogenson,et al.  Dopamine enhances terminal excitability of hippocampal-accumbens neurons via D2 receptor: role of dopamine in presynaptic inhibition , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[98]  G. Mogenson,et al.  Electrophysiological responses of neurones in the nucleus accumbens to hippocampal stimulation and the attenuation of the excitatory responses by the mesolimbic dopaminergic system , 1984, Brain Research.

[99]  M. Horstink,et al.  Cognitive and motor shifting aptitude disorder in Parkinson's disease. , 1984, Journal of neurology, neurosurgery, and psychiatry.

[100]  A. Albanese,et al.  Organization of the ascending projections from the ventral tegmental area: A multiple fluorescent retrograde tracer study in the rat , 1983, The Journal of comparative neurology.

[101]  R. Wurtz,et al.  Visual and oculomotor functions of monkey substantia nigra pars reticulata. III. Memory-contingent visual and saccade responses. , 1983, Journal of neurophysiology.

[102]  S. Thorpe,et al.  Responses of striatal neurons in the behaving monkey. 1. Head of the caudate nucleus , 1983, Behavioural Brain Research.

[103]  D. Prince,et al.  Dopamine action on hippocampal pyramidal cells , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[104]  J. Fallon Collateralization of monoamine neurons: mesotelencephalic dopamine projections to caudate, septum, and frontal cortex , 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[105]  Herve Simon,et al.  Origin of dopaminergic innervation of the rat hippocampal formation , 1980, Neuroscience Letters.

[106]  M. Eckardt The Hippocampus as a Cognitive Map , 1980 .

[107]  L. Nadel,et al.  The Hippocampus as a Cognitive Map , 1978 .

[108]  J. O’Keefe Place units in the hippocampus of the freely moving rat , 1976, Experimental Neurology.

[109]  R. Hirsh The hippocampus and contextual retrieval of information from memory: a theory. , 1974, Behavioral biology.

[110]  J. O'Keefe,et al.  The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. , 1971, Brain research.

[111]  Sheri J. Y. Mizumori,et al.  Hippocampal place fields : relevance to learning and memory , 2008 .

[112]  W. Schultz Behavioral theories and the neurophysiology of reward. , 2006, Annual review of psychology.

[113]  Young Ho Kim,et al.  Role of active movement in place‐specific firing of hippocampal neurons , 2005, Hippocampus.

[114]  M. Hasselmo What is the function of hippocampal theta rhythm?—Linking behavioral data to phasic properties of field potential and unit recording data , 2005, Hippocampus.

[115]  G. Buzsáki Theta rhythm of navigation: Link between path integration and landmark navigation, episodic and semantic memory , 2005, Hippocampus.

[116]  P. Read Montague,et al.  Reinforcement Learning: An Introduction , 2005, IEEE Transactions on Neural Networks.

[117]  M. Hasselmo,et al.  High acetylcholine levels set circuit dynamics for attention and encoding and low acetylcholine levels set dynamics for consolidation. , 2004, Progress in brain research.

[118]  W. Schultz,et al.  Role of primate basal ganglia and frontal cortex in the internal generation of movements , 2004, Experimental Brain Research.

[119]  M. Kimura,et al.  Activity of primate putamen neurons is selective to the mode of voluntary movement: visually guided, self-initiated or memory-guided , 2004, Experimental Brain Research.

[120]  S. T. Kitai,et al.  Single-unit activity in the globus pallidus and neostriatum of the rat during performance of a trained head movement , 2004, Experimental Brain Research.

[121]  Wilfried Brauer,et al.  Spatial Cognition III , 2003, Lecture Notes in Computer Science.

[122]  S. Mizumori,et al.  The Behavioral Implementation of Hippocampal Processing , 2002 .

[123]  B. Knowlton,et al.  Learning and memory functions of the Basal Ganglia. , 2002, Annual review of neuroscience.

[124]  Patricia E. Sharp,et al.  The neural basis of navigation : evidence from single cell recording , 2002 .

[125]  M A Arbib,et al.  Competitive Hebbian learning and the hippocampal place cell system: Modeling the interaction of visual and path integration cues , 2001, Hippocampus.

[126]  N. Cohen From Conditioning to Conscious Recollection Memory Systems of the Brain. Oxford Psychology Series, Volume 35. , 2001 .

[127]  H. Eichenbaum,et al.  From Conditioning to Conscious Recollection , 2001 .

[128]  A. Dickinson,et al.  Neuronal coding of prediction errors. , 2000, Annual review of neuroscience.

[129]  David J. Foster,et al.  A model of hippocampally dependent navigation, using the temporal difference learning rule , 2000, Hippocampus.

[130]  M. Goldberg,et al.  Space and attention in parietal cortex. , 1999, Annual review of neuroscience.

[131]  S J Mizumori,et al.  Hippocampal Representational Organization and Spatial Context , 1999, Hippocampus.

[132]  A Berthoz,et al.  Discharge correlates of hippocampal complex spike neurons in behaving rats passively displaced on a mobile robot , 1998, Hippocampus.

[133]  P. Goldman-Rakic The cortical dopamine system: role in memory and cognition. , 1998, Advances in pharmacology.

[134]  W. Schultz,et al.  Context-dependent activity in primate striatum reflecting past and future behavioral events. , 1995 .

[135]  Colin Wilson The contribution of cortical neurons to the firing pattern of striatal spiny neurons , 1995 .

[136]  Joel L. Davis,et al.  Adaptive Critics and the Basal Ganglia , 1995 .

[137]  James C. Houk,et al.  Information Processing in Modular Circuits Linking Basal Ganglia and Cerebral Cortex , 1994 .

[138]  M. Packard,et al.  Dissociation of hippocampus and caudate nucleus memory systems by posttraining intracerebral injection of dopamine agonists. , 1991, Behavioral neuroscience.

[139]  Elsevier Biomedical Press RESPONSES OF STRIATAL NEURONS IN THE BEHAVING MONKEY. 1. HEAD OF THE CAUDATE NUCLEUS , 1983 .

[140]  R. Rescorla,et al.  A theory of Pavlovian conditioning : Variations in the effectiveness of reinforcement and nonreinforcement , 1972 .

[141]  W. F. Prokasy,et al.  Classical conditioning II: Current research and theory. , 1972 .

[142]  L. Frank,et al.  Behavioral/Systems/Cognitive Hippocampal Plasticity across Multiple Days of Exposure to Novel Environments , 2022 .

[143]  J. Lowry,et al.  Behavioural Brain Research , 2022 .