A Variational Approach to Video Registration with Subspace Constraints

This paper addresses the problem of non-rigid video registration, or the computation of optical flow from a reference frame to each of the subsequent images in a sequence, when the camera views deformable objects. We exploit the high correlation between 2D trajectories of different points on the same non-rigid surface by assuming that the displacement of any point throughout the sequence can be expressed in a compact way as a linear combination of a low-rank motion basis. This subspace constraint effectively acts as a trajectory regularization term leading to temporally consistent optical flow. We formulate it as a robust soft constraint within a variational framework by penalizing flow fields that lie outside the low-rank manifold. The resulting energy functional can be decoupled into the optimization of the brightness constancy and spatial regularization terms, leading to an efficient optimization scheme. Additionally, we propose a novel optimization scheme for the case of vector valued images, based on the dualization of the data term. This allows us to extend our approach to deal with colour images which results in significant improvements on the registration results. Finally, we provide a new benchmark dataset, based on motion capture data of a flag waving in the wind, with dense ground truth optical flow for evaluation of multi-frame optical flow algorithms for non-rigid surfaces. Our experiments show that our proposed approach outperforms state of the art optical flow and dense non-rigid registration algorithms.

[1]  Henning Biermann,et al.  Recovering non-rigid 3D shape from image streams , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[2]  Guillermo Sapiro,et al.  Color Snakes , 1997, Comput. Vis. Image Underst..

[3]  D. Cremers,et al.  Duality TV-L1 flow with fundamental matrix prior , 2008, 2008 23rd International Conference Image and Vision Computing New Zealand.

[4]  Lorenzo Torresani,et al.  Space-Time Tracking , 2002, ECCV.

[5]  M. Nikolova An Algorithm for Total Variation Minimization and Applications , 2004 .

[6]  Henning Zimmer,et al.  Modeling temporal coherence for optical flow , 2011, 2011 International Conference on Computer Vision.

[7]  David A. Forsyth,et al.  Capturing and animating occluded cloth , 2007, ACM Trans. Graph..

[8]  Michal Irani,et al.  Multi-Frame Correspondence Estimation Using Subspace Constraints , 2002, International Journal of Computer Vision.

[9]  Tony F. Chan,et al.  A General Framework for a Class of First Order Primal-Dual Algorithms for Convex Optimization in Imaging Science , 2010, SIAM J. Imaging Sci..

[10]  Antonin Chambolle,et al.  Diagonal preconditioning for first order primal-dual algorithms in convex optimization , 2011, 2011 International Conference on Computer Vision.

[11]  Daniel Cremers,et al.  Anisotropic Huber-L1 Optical Flow , 2009, BMVC.

[12]  Daniel Rueckert,et al.  Dense Multi-frame Optic Flow for Non-rigid Objects Using Subspace Constraints , 2010, ACCV.

[13]  Lourdes Agapito,et al.  Robust Trajectory-Space TV-L1 Optical Flow for Non-rigid Sequences , 2011, EMMCVPR.

[14]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[15]  Horst Bischof,et al.  A Duality Based Approach for Realtime TV-L1 Optical Flow , 2007, DAGM-Symposium.

[16]  Mads Nielsen,et al.  TV-L1 Optical Flow for Vector Valued Images , 2011, EMMCVPR.

[17]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[18]  Julio Esclarín Monreal,et al.  A PDE model for computing the optimal flow , 1999 .

[19]  Rachid Deriche,et al.  Optical-Flow Estimation while Preserving Its Discontinuities: A Variational Approach , 1995, ACCV.

[20]  Christoph Schnörr,et al.  Segmentation of visual motion by minimizing convex non-quadratic functionals , 1994, ICPR.

[21]  Nicolas Papadakis,et al.  Dynamically consistent optical flow estimation , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[22]  Lorenzo Torresani,et al.  Tracking and modeling non-rigid objects with rank constraints , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[23]  Gary J. Balas,et al.  Optical flow: a curve evolution approach , 1995, Proceedings., International Conference on Image Processing.

[24]  Andrew J. Davison,et al.  DTAM: Dense tracking and mapping in real-time , 2011, 2011 International Conference on Computer Vision.

[25]  Carlo Tomasi,et al.  Dense Lagrangian motion estimation with occlusions , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[26]  Jitendra Malik,et al.  Large Displacement Optical Flow: Descriptor Matching in Variational Motion Estimation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[28]  Daniel Cremers,et al.  Large displacement optical flow computation withoutwarping , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[29]  Rachid Deriche,et al.  Computing Optical Flow via Variational Techniques , 1999, SIAM J. Appl. Math..

[30]  Rachid Deriche,et al.  Regularizing Flows for Constrained Matrix-Valued Images , 2004 .

[31]  Alfred M. Bruckstein,et al.  Over-Parameterized Variational Optical Flow , 2007, International Journal of Computer Vision.

[32]  Adrien Bartoli,et al.  Coarse-to-fine low-rank structure-from-motion , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[33]  Daniel Cremers,et al.  Real-Time Dense Geometry from a Handheld Camera , 2010, DAGM-Symposium.

[34]  Antonio Torralba,et al.  SIFT Flow: Dense Correspondence across Scenes and Its Applications , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  Yuandong Tian,et al.  A globally optimal data-driven approach for image distortion estimation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[36]  Joachim Weickert,et al.  On Discontinuity-Preserving Optic Flow , 1998 .

[37]  Joachim Weickert,et al.  Reliable Estimation of Dense Optical Flow Fields with Large Displacements , 2000, International Journal of Computer Vision.

[38]  A. Verri,et al.  A computational approach to motion perception , 1988, Biological Cybernetics.

[39]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[40]  Tony F. Chan,et al.  Color TV: total variation methods for restoration of vector-valued images , 1998, IEEE Trans. Image Process..

[41]  Daniel Cremers,et al.  An Improved Algorithm for TV-L 1 Optical Flow , 2009, Statistical and Geometrical Approaches to Visual Motion Analysis.

[42]  Joachim Weickert,et al.  A Theoretical Framework for Convex Regularizers in PDE-Based Computation of Image Motion , 2001, International Journal of Computer Vision.

[43]  Thomas Brox,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Highly Accurate Optic Flow Computation with Theoretically Justified Warping Highly Accurate Optic Flow Computation with Theoretically Justified Warping , 2022 .

[44]  Joachim Weickert,et al.  Variational Optic Flow Computation with a Spatio-Temporal Smoothness Constraint , 2001, Journal of Mathematical Imaging and Vision.

[45]  Rachid Deriche,et al.  Vector-valued image regularization with PDE's: a common framework for different applications , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[46]  Takeo Kanade,et al.  Nonrigid Structure from Motion in Trajectory Space , 2008, NIPS.

[47]  Daniel Cremers,et al.  Global Solutions of Variational Models with Convex Regularization , 2010, SIAM J. Imaging Sci..

[48]  Gary J. Balas,et al.  Optical flow: a curve evolution approach , 1996, IEEE Trans. Image Process..

[49]  Aaron Hertzmann,et al.  Nonrigid Structure-from-Motion: Estimating Shape and Motion with Hierarchical Priors , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[50]  Daniel Pizarro-Perez,et al.  Feature-Based Deformable Surface Detection with Self-Occlusion Reasoning , 2011, International Journal of Computer Vision.

[51]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[52]  Michael J. Black,et al.  Learning Optical Flow , 2008, ECCV.

[53]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[54]  Rachid Deriche,et al.  Vector-valued image regularization with PDEs: a common framework for different applications , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[55]  Daniel Cremers,et al.  Structure- and motion-adaptive regularization for high accuracy optic flow , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[56]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[57]  Takeo Kanade,et al.  Trajectory Space: A Dual Representation for Nonrigid Structure from Motion , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[58]  Matthew Brand,et al.  Morphable 3D models from video , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[59]  Pascal Fua,et al.  Template-free monocular reconstruction of deformable surfaces , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[60]  Richard Szeliski,et al.  A Database and Evaluation Methodology for Optical Flow , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[61]  Thomas Brox,et al.  High Accuracy Optical Flow Estimation Based on a Theory for Warping , 2004, ECCV.