Confronting the Challenge of Modeling Cloud and Precipitation Microphysics

Abstract In the atmosphere, microphysics refers to the microscale processes that affect cloud and precipitation particles and is a key linkage among the various components of Earth's atmospheric water and energy cycles. The representation of microphysical processes in models continues to pose a major challenge leading to uncertainty in numerical weather forecasts and climate simulations. In this paper, the problem of treating microphysics in models is divided into two parts: (i) how to represent the population of cloud and precipitation particles, given the impossibility of simulating all particles individually within a cloud, and (ii) uncertainties in the microphysical process rates owing to fundamental gaps in knowledge of cloud physics. The recently developed Lagrangian particle‐based method is advocated as a way to address several conceptual and practical challenges of representing particle populations using traditional bulk and bin microphysics parameterization schemes. For addressing critical gaps in cloud physics knowledge, sustained investment for observational advances from laboratory experiments, new probe development, and next‐generation instruments in space is needed. Greater emphasis on laboratory work, which has apparently declined over the past several decades relative to other areas of cloud physics research, is argued to be an essential ingredient for improving process‐level understanding. More systematic use of natural cloud and precipitation observations to constrain microphysics schemes is also advocated. Because it is generally difficult to quantify individual microphysical process rates from these observations directly, this presents an inverse problem that can be viewed from the standpoint of Bayesian statistics. Following this idea, a probabilistic framework is proposed that combines elements from statistical and physical modeling. Besides providing rigorous constraint of schemes, there is an added benefit of quantifying uncertainty systematically. Finally, a broader hierarchical approach is proposed to accelerate improvements in microphysics schemes, leveraging the advances described in this paper related to process modeling (using Lagrangian particle‐based schemes), laboratory experimentation, cloud and precipitation observations, and statistical methods.

[1]  Andrew W. Moore,et al.  Bayesian Neural Networks for Internet Traffic Classification , 2007, IEEE Transactions on Neural Networks.

[2]  Derek J. Posselt,et al.  Application of Multivariate Sensitivity Analysis Techniques to AGCM-Simulated Tropical Cyclones , 2018 .

[3]  J. Hallett,et al.  Ice Crystal Concentration in Cumulus Clouds: Influence of the Drop Spectrum , 1974, Science.

[4]  Corinna Hoose,et al.  Redistribution of ice nuclei between cloud and rain droplets: Parameterization and application to deep convective clouds , 2017 .

[5]  R. Rasmussen,et al.  Changes in the convective population and thermodynamic environments in convection-permitting regional climate simulations over the United States , 2017, Climate Dynamics.

[6]  Edward A. Brandes,et al.  Flow in Severe Thunderstorms Observed bu Dual-Doppler Radar , 1977 .

[7]  Brian Cairns,et al.  Accuracy Assessments of Cloud Droplet Size Retrievals from Polarized Reflectance Measurements by the Research Scanning Polarimeter , 2012 .

[8]  Jason A. Milbrandt,et al.  Comparison of Two-Moment Bulk Microphysics Schemes in Idealized Supercell Thunderstorm Simulations , 2011 .

[9]  Olivier P. Prat,et al.  Exploring the Transient Behavior of Z–R Relationships: Implications for Radar Rainfall Estimation , 2009 .

[10]  Alexander V. Ryzhkov,et al.  Use of X-Band Differential Reflectivity Measurements to Study Shallow Arctic Mixed-Phase Clouds , 2016 .

[11]  Raymond A. Shaw,et al.  Influence of Microphysical Variability on Stochastic Condensation in a Turbulent Laboratory Cloud , 2018 .

[12]  Vincent E. Larson,et al.  Supplying Local Microphysics Parameterizations with Information about Subgrid Variability: Latin Hypercube Sampling , 2005 .

[13]  Matthew R. Kumjian,et al.  Bulk-Density Representations of Branched Planar Ice Crystals: Errors in the Polarimetric Radar Variables , 2017 .

[14]  H. Morrison,et al.  Parameterization of Cloud Microphysics Based on the Prediction of Bulk Ice Particle Properties. Part III: Introduction of Multiple Free Categories , 2016 .

[15]  Andrzej A. Wyszogrodzki,et al.  Turbulent collision-coalescence in maritime shallow convection , 2013 .

[16]  Peter V. Hobbs,et al.  The Mesoscale and Microscale Structure and Organization of Clouds and Precipitation in Midlatitude Cyclones. II: Warm-Frontal Clouds , 1980 .

[17]  Jason A. Milbrandt,et al.  Sensitivity of Idealized Squall-Line Simulations to the Level of Complexity Used in Two-Moment Bulk Microphysics Schemes , 2012 .

[18]  Bernd Kärcher,et al.  Trapping of trace gases by growing ice surfaces including surface-saturated adsorption , 2009 .

[19]  Derek J. Posselt,et al.  A Method for Assessing Relative Skill in Retrieving Cloud and Precipitation Properties in Next-Generation Cloud Radar and Radiometer Orbiting Observatories , 2019 .

[20]  L. Randall Koenig,et al.  The Glaciating Behavior of Small Cumulonimbus Clouds , 1963 .

[21]  V. Chandrasekar,et al.  An Areal Rainfall Estimator Using Differential Propagation Phase: Evaluation Using a C-Band Radar and a Dense Gauge Network in the Tropics , 2001 .

[22]  A. B. Long Solutions to the Droplet Collection Equation for Polynomial Kernels , 1974 .

[23]  Bing Lin,et al.  A new statistically based autoconversion rate parameterization for use in large-scale models , 2002 .

[24]  Mariana C. Rufino Organic matter matters , 2012 .

[25]  Joyce E. Penner,et al.  Ice nucleation parameterization for global models , 2005 .

[26]  Kenneth C. Young,et al.  A Numerical Simulation of Wintertime, Orographic Precipitation: Part I. Description of Model Microphysics and Numerical Techniques , 1974 .

[27]  Paul J. DeMott,et al.  Ice in Clouds Experiment-Layer Clouds. Part II: Testing Characteristics of Heterogeneous Ice Formation in Lee Wave Clouds , 2012 .

[28]  W. Cotton,et al.  A triple-moment hail bulk microphysics scheme. Part I: Description and initial evaluation , 2014 .

[29]  John Hallett,et al.  Evaporation and melting of ice crystals: A laboratory study , 1989 .

[30]  Alexander V. Ryzhkov,et al.  The Hydrometeor Classification Algorithm for the Polarimetric WSR-88D: Description and Application to an MCS , 2009 .

[31]  Wojciech W. Grabowski,et al.  Modeling of Cloud Microphysics: Can We Do Better? , 2018, Bulletin of the American Meteorological Society.

[32]  W. Hall,et al.  A Detailed Microphysical Model Within a Two-Dimensional Dynamic Framework: Model Description and Preliminary Results , 1980 .

[33]  Derek J. Posselt,et al.  Linearization of Microphysical Parameterization Uncertainty Using Multiplicative Process Perturbation Parameters , 2014 .

[34]  A. H. Woodcock,et al.  Salt Particles and Raindrops in Hawaii , 1971 .

[35]  J. Rosinski,et al.  On the Ejection of Microdroplets from the Surface of a Freezing Water Drop , 1972 .

[36]  Y. Kogan A Cumulus Cloud Microphysics Parameterization for Cloud-Resolving Models , 2013 .

[37]  Steven Platnick,et al.  Vertical Photon Transport in Cloud Remote Sensing Problems , 2013 .

[38]  Wojciech W. Grabowski,et al.  Lagrangian condensation microphysics with Twomey CCN activation , 2017 .

[39]  Keith Beven,et al.  Bayesian estimation of uncertainty in land surface‐atmosphere flux predictions , 1997 .

[40]  W Cantrell,et al.  Dispersion Aerosol Indirect Effect in Turbulent Clouds: Laboratory Measurements of Effective Radius , 2018, Geophysical research letters.

[41]  Jason A. Milbrandt,et al.  The Pan-Canadian High Resolution (2.5 km) Deterministic Prediction System , 2016 .

[42]  Nagiza F. Samatova,et al.  Theory-Guided Data Science: A New Paradigm for Scientific Discovery from Data , 2016, IEEE Transactions on Knowledge and Data Engineering.

[43]  R. Stewart,et al.  Temporal evolution of drop spectra to collisional equilibrium in steady and pulsating rain , 1987 .

[44]  Alexei Kiselev,et al.  Secondary Ice Formation during Freezing of Levitated Droplets , 2018, Journal of the Atmospheric Sciences.

[45]  M. Rodwell,et al.  Toward Seamless Prediction: Calibration of Climate Change Projections Using Seasonal Forecasts , 2008 .

[46]  A. Gupta,et al.  A Bayesian Approach to , 1997 .

[47]  K. D. Beheng,et al.  NUMERICAL INVESTIGATION OF COLLISION-INDUCED BREAKUP OF RAINDROPS. PART I: METHODOLOGY AS WELL AS DEPENDENCIES ON COLLISION ENERGY AND EXCENTRICITY , 2008 .

[48]  J. Hallett,et al.  Production of secondary ice particles during the riming process , 1974, Nature.

[49]  S. Woods,et al.  Microphysical Properties of Tropical Tropopause Layer Cirrus , 2018, Journal of geophysical research. Atmospheres : JGR.

[50]  W. Cooper,et al.  Effects of Variable Droplet Growth Histories on Droplet Size Distributions. Part I: Theory , 1989 .

[51]  Edwin X. Berry,et al.  An Analysis of Cloud Drop Growth by Collection: Part III. Accretion and Self-collection , 1974 .

[52]  John Hallett,et al.  Aircraft measurements of ice in Florida cumuli , 1978 .

[53]  P. R. Jonas,et al.  How Important Is the Spectral Ripening Effect in Stratiform Boundary Layer Clouds? Studies Using Simple Trajectory Analysis , 2002 .

[54]  V J SCHAEFER,et al.  The formation of ice crystals in the laboratory and the atmosphere. , 1949, Chemical reviews.

[55]  Hartwig Deneke,et al.  Remote Sensing of Droplet Number Concentration in Warm Clouds: A Review of the Current State of Knowledge and Perspectives , 2018, Reviews of geophysics.

[56]  Timothy J. Garrett,et al.  Analytical Solutions for Precipitation Size Distributions at Steady State , 2019, Journal of the Atmospheric Sciences.

[57]  Conrad L. Ziegler,et al.  Aerosol Effects on Simulated Storm Electrification and Precipitation in a Two-Moment Bulk Microphysics Model , 2013 .

[58]  Greg M. McFarquhar,et al.  Statistical Theory on the Functional Form of Cloud Particle Size Distributions , 2018, Journal of the Atmospheric Sciences.

[59]  J. Locatelli,et al.  The IMPROVE-1 Storm of 1–2 February 2001. Part III: Sensitivity of a Mesoscale Model Simulation to the Representation of Snow Particle Types and Testing of a Bulk Microphysical Scheme with Snow Habit Prediction , 2007 .

[60]  Andrew Gettelman,et al.  The Art and Science of Climate Model Tuning , 2017 .

[61]  Bryan A. Baum,et al.  Cloud thermodynamic phase inferred from merged POLDER and MODIS data , 2007 .

[62]  Pengfei Zhang,et al.  Potential Utilization of Specific Attenuation for Rainfall Estimation, Mitigation of Partial Beam Blockage, and Radar Networking , 2014 .

[63]  Ulrike Lohmann,et al.  Sensitivity of the total anthropogenic aerosol effect to the treatment of rain in a global climate model , 2009 .

[64]  Robert S. Plant,et al.  A simple ensemble approach for more robust process‐based sensitivity analysis of case studies in convection‐permitting models , 2019, Quarterly Journal of the Royal Meteorological Society.

[65]  Derek J. Posselt,et al.  MCMC-Based Assessment of the Error Characteristics of a Surface-Based Combined Radar–Passive Microwave Cloud Property Retrieval , 2014 .

[66]  Jon Thomas Nelson a Theoretical Study of Ice Crystal Growth in the Atmosphere. , 1994 .

[67]  Hanna Pawlowska,et al.  Stochastic coalescence in Lagrangian cloud microphysics , 2017 .

[68]  T. W. CHOULARTON,et al.  A possible mechanism of ice splinter production during riming , 1978, Nature.

[69]  Brian A. Colle,et al.  A New Bulk Microphysical Scheme That Includes Riming Intensity and Temperature-Dependent Ice Characteristics , 2011 .

[70]  Alexander V. Ryzhkov,et al.  Radar Polarimetry for Weather Observations , 2019, Springer Atmospheric Sciences.

[71]  Yan Zhang,et al.  The Atmospheric Imaging Radar: Simultaneous Volumetric Observations Using a Phased Array Weather Radar , 2013 .

[72]  Andrew Gettelman,et al.  Climate impacts of ice nucleation , 2012 .

[73]  G. Bryan,et al.  Broadening of Modeled Cloud Droplet Spectra Using Bin Microphysics in an Eulerian Spatial Domain , 2018, Journal of the Atmospheric Sciences.

[74]  Edwin X. Berry,et al.  An Analysis of Cloud Drop Growth by Collection: Part IV. A New Parameterization , 1974 .

[75]  M. Schlick,et al.  Geometrie und Erfahrung , 1921, Naturwissenschaften.

[76]  Paul Connolly,et al.  Microscopic Observations of Riming on an Ice Surface Using High Speed Video , 2017 .

[77]  D. Niedermeier,et al.  Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions , 2016, Proceedings of the National Academy of Sciences.

[78]  J. Seinfeld,et al.  Are simulated aerosol-induced effects on deep convective clouds strongly dependent on saturation adjustment? , 2012 .

[79]  Sylwester Arabas,et al.  Large-Eddy Simulations of Trade Wind Cumuli Using Particle-Based Microphysics with Monte Carlo Coalescence , 2012, 1205.3313.

[80]  Stéphane Laroche,et al.  A microphysical bulk formulation based on scaling normalization of the particle size distribution. Part II: Data assimilation into physical processes , 2005 .

[81]  Greg Michael McFarquhar,et al.  A New Representation of Collision-Induced Breakup of Raindrops and Its Implications for the Shapes of Raindrop Size Distributions , 2004 .

[82]  Francis W. Murray,et al.  Ice-Bearing Cumulus Cloud Evolution: Numerical Simulation and General Comparison Against Observations. , 1976 .

[83]  Otto P. Hasekamp,et al.  Retrieval of liquid water cloud properties from POLDER-3 measurements using a neural network ensemble approach , 2018, Atmospheric Measurement Techniques.

[84]  Alexander V. Ryzhkov,et al.  Assessment of Rainfall Measurement That Uses Specific Differential Phase , 1996 .

[85]  H. L. Miller,et al.  Climate Change 2007: The Physical Science Basis , 2007 .

[86]  H. D. Orville,et al.  Bulk Parameterization of the Snow Field in a Cloud Model , 1983 .

[87]  Vincent E. Larson,et al.  Analytic upscaling of a local microphysics scheme. Part I: Derivation , 2013 .

[88]  B. J. Mason,et al.  The fragmentation and electrification of freezing water drops , 1960 .

[89]  G. Thompson,et al.  A Study of Aerosol Impacts on Clouds and Precipitation Development in a Large Winter Cyclone , 2014 .

[90]  Stephen J. Lord,et al.  Role of a Parameterized Ice-Phase Microphysics in an Axisymmetric, Nonhydrostatic Tropical Cyclone Model , 1984 .

[91]  Christopher R. Williams,et al.  Reflectivity and Liquid Water Content Vertical Decomposition Diagrams to Diagnose Vertical Evolution of Raindrop Size Distributions , 2016 .

[92]  Yefim L. Kogan,et al.  Parameterization of Cloud Microphysics Based on Full Integral Moments , 2012 .

[93]  Guoguang Zheng,et al.  A simple droplet spectrum derived from entropy theory , 1994 .

[94]  I. J. Caylor,et al.  Polarization Radar Estimates of Raindrop Size Spectra and Rainfall Rates , 1989 .

[95]  Pengfei Zhang,et al.  Use of polarimetric radar measurements to constrain simulated convective cell evolution: a pilot study with Lagrangian tracking , 2019, Atmospheric Measurement Techniques.

[96]  Pavlos Kollias,et al.  Rain retrieval from dual‐frequency radar Doppler spectra: validation and potential for a midlatitude precipitating case‐study , 2017 .

[97]  Peter V. Hobbs,et al.  Ice Multiplication in Clouds , 1969 .

[98]  Cameron Tropea,et al.  Shape evolution of a melting nonspherical particle. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[99]  D. M. Titterington,et al.  Bayesian Methods for Neural Networks and Related Models , 2004 .

[100]  John H. Seinfeld,et al.  Theoretical basis for convective invigoration due to increased aerosol concentration , 2011 .

[101]  W. Knorr,et al.  Inversion of terrestrial ecosystem model parameter values against eddy covariance measurements by Monte Carlo sampling , 2005 .

[102]  Olivier P. Prat,et al.  Revisiting Low and List (1982): Evaluation of Raindrop Collision Parameterizations Using Laboratory Observations and Modeling , 2008 .

[103]  S. Mossop,et al.  Concentrations of Ice Crystals in Clouds , 1970 .

[104]  Daniel T. Gillespie,et al.  The Stochastic Coalescence Model for Cloud Droplet Growth. , 1972 .

[105]  K. R. Hardy The Development of Raindrop-size Distributions and Implications Related to the Physics of Precipitation , 1963 .

[106]  V. Chandrasekar,et al.  Polarimetric Doppler Weather Radar: Principles and Applications , 2001 .

[107]  Peter V. Hobbs,et al.  The Mesoscale and Microscale Structure and Organization of Clouds and Precipitation in Midlatitude Cyclones. XII: A Diagnostic Modeling Study of Precipitation Development in Narrow Cold-Frontal Rainbands , 1984 .

[108]  N. Fukuta,et al.  Experimental Studies on the Growth of Small Ice Crystals , 1969 .

[109]  Richard Cotton,et al.  Processing of Ice Cloud In Situ Data Collected by Bulk Water, Scattering, and Imaging Probes: Fundamentals, Uncertainties, and Efforts toward Consistency , 2017 .

[110]  Axel Seifert,et al.  McSnow: A Monte‐Carlo Particle Model for Riming and Aggregation of Ice Particles in a Multidimensional Microphysical Phase Space , 2017 .

[111]  Sonia M. Kreidenweis,et al.  The Impact of Giant Cloud Condensation Nuclei on Drizzle Formation in Stratocumulus: Implications for Cloud Radiative Properties , 1999 .

[112]  Alexander V. Ryzhkov,et al.  Polarimetric Radar Relations for Quantification of Snow Based on Disdrometer Data , 2018 .

[113]  R. P. Lawson,et al.  A Review of Ice Particle Shapes in Cirrus formed In Situ and in Anvils , 2019, Journal of Geophysical Research: Atmospheres.

[114]  Aaron Bansemer,et al.  Secondary Ice Production by Fragmentation of Freezing Drops: Formulation and Theory , 2018, Journal of the Atmospheric Sciences.

[115]  Nigel Roberts,et al.  Characteristics of high-resolution versions of the Met Office unified model for forecasting convection over the United Kingdom , 2008 .

[116]  Yuzuru Kushiyama,et al.  Possible High Ice Particle Production during Graupel–Graupel Collisions , 1995 .

[117]  Corinna Hoose,et al.  Ice nucleation activity of agricultural soil dust aerosols from Mongolia, Argentina, and Germany , 2016 .

[118]  Fuqing Zhang,et al.  Assimilation of All-Sky Infrared Radiances from Himawari-8 and Impacts of Moisture and Hydrometer Initialization on Convection-Permitting Tropical Cyclone Prediction , 2018, Monthly Weather Review.

[119]  Ziad S. Haddad,et al.  Atmospheric remote sensing with convoys of miniature radars , 2018, Asia-Pacific Remote Sensing.

[120]  M. D. Petters,et al.  Predicting global atmospheric ice nuclei distributions and their impacts on climate , 2010, Proceedings of the National Academy of Sciences.

[121]  Robert G. Fovell,et al.  Numerical Simulation of a Midlatitude Squall Line in Two Dimensions , 1988 .

[122]  M. Yau,et al.  A Multimoment Bulk Microphysics Parameterization. Part I: Analysis of the Role of the Spectral Shape Parameter , 2005 .

[123]  Sisi Chen,et al.  Cloud Droplet Collisions in Turbulent Environment: Collision Statistics and Parameterization , 2016 .

[124]  N Bharadwaj,et al.  THE MIDLATITUDE CONTINENTAL CONVECTIVE CLOUDS EXPERIMENT (MC3E). , 2016, Bulletin of the American Meteorological Society.

[125]  A. Korolev,et al.  The Influence of Supersaturation Fluctuations on Droplet Size Spectra Formation , 1995 .

[126]  Alexander V. Ryzhkov,et al.  An Evaluation of Radar Rainfall Estimates from Specific Differential Phase , 2001 .

[127]  V. Masson,et al.  The AROME-France Convective-Scale Operational Model , 2011 .

[128]  Jerome H. Friedman Multivariate adaptive regression splines (with discussion) , 1991 .

[129]  Lulin Xue,et al.  Bridging the condensation-collision size gap: A direct numerical simulation of continuous droplet growth in turbulent clouds , 2018 .

[130]  Keith Beven,et al.  Prophecy, reality and uncertainty in distributed hydrological modelling , 1993 .

[131]  G. Mann,et al.  Large contribution of natural aerosols to uncertainty in indirect forcing , 2013, Nature.

[132]  Tim N. Palmer,et al.  Using numerical weather prediction to assess climate models , 2007 .

[133]  Paul Connolly,et al.  A laboratory investigation into the aggregation efficiency of small ice crystals , 2011 .

[134]  B. Stevens,et al.  Understanding macrophysical outcomes of microphysical choices in simulations of shallow cumulus convection , 2008 .

[135]  Matthew West,et al.  Weighted Flow Algorithms (WFA) for stochastic particle coagulation , 2011, J. Comput. Phys..

[136]  Matthew Bailey,et al.  Nucleation effects on the habit of vapour grown ice crystals from −18 to −42°C , 2002 .

[137]  Sonia M. Kreidenweis,et al.  Organic matter matters for ice nuclei of agricultural soil origin , 2014 .

[138]  J. A. Pena,et al.  Freezing of Water Droplets in Equilibrium with Different Gases , 1969 .

[139]  Alan Shapiro,et al.  Sensitivity of Real-Data Simulations of the 3 May 1999 Oklahoma City Tornadic Supercell and Associated Tornadoes to Multimoment Microphysics. Part I: Storm- and Tornado-Scale Numerical Forecasts , 2015 .

[140]  John Latham,et al.  A parametrization of the ice water content observed in frontal and convective clouds , 1996 .

[141]  T. Wilbanks,et al.  Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change , 2007 .

[142]  Axel Seifert,et al.  Evolution of the Shape of the Raindrop Size Distribution in Simulated Shallow Cumulus , 2016 .

[143]  B. Ferrier,et al.  A Double-Moment Multiple-Phase Four-Class Bulk Ice Scheme. Part I: Description , 1994 .

[144]  Greg Michael McFarquhar,et al.  The role of breakup and coalescence in the three-peak equilibrium distribution of raindrops , 1990 .

[145]  Jussi Leinonen,et al.  Improved Retrieval of Cloud Liquid Water from CloudSat and MODIS , 2016 .

[146]  C. H. B. Priestley,et al.  The physics of rainclouds , 1955 .

[147]  Ian Barnes,et al.  Environmental Simulation Chambers: Application to Atmospheric Chemical Processes , 2006 .

[148]  Liu Feng,et al.  On the size distribution of cloud droplets , 1995 .

[149]  Philip S. Brown,et al.  Analysis of the Low and List Drop-Breakup Formulation , 1986 .

[150]  Ann M. Fridlind,et al.  An Evaluation of Size-Resolved Cloud Microphysics Scheme Numerics for Use with Radar Observations. Part I: Collision–Coalescence , 2019, Journal of the Atmospheric Sciences.

[151]  Stéphane Laroche,et al.  A Microphysical Bulk Formulation Based on Scaling Normalization of the Particle Size Distribution. Part I: Description , 2005 .

[152]  Hirohiko Masunaga,et al.  Improving a spectral bin microphysical scheme using TRMM satellite observations , 2010 .

[153]  Ann M. Fridlind,et al.  Variation of ice crystal size, shape, and asymmetry parameter in tops of tropical deep convective clouds , 2014 .

[154]  S. Mossop,et al.  The Origin and Concentration of Ice Crystals in Clouds , 1985 .

[155]  John Paul Gosling,et al.  Evaluating uncertainty in convective cloud microphysics using statistical emulation , 2015 .

[156]  S. Klein,et al.  Unresolved spatial variability and microphysical process rates in large‐scale models , 2000 .

[157]  Peter V. Hobbs,et al.  Ice particles in stratiform clouds in the Arctic and possible mechanisms for the production of high ice concentrations , 2001 .

[158]  Omar M. Knio,et al.  An overview of uncertainty quantification techniques with application to oceanic and oil‐spill simulations , 2016 .

[159]  Ahmed Abbasi,et al.  Modeling Interactions in , 2014 .

[160]  Joanne Simpson,et al.  Comparison of Ice-Phase Microphysical Parameterization Schemes Using Numerical Simulations of Tropical Convection , 1991 .

[161]  Paul A. Vaillancourt,et al.  Microscopic approach to cloud droplet growth by condensation , 1998 .

[162]  Roy Rasmussen,et al.  Melting and Shedding of Graupel and Hail. Part I: Model Physics , 1987 .

[163]  J. Friedman Multivariate adaptive regression splines , 1990 .

[164]  Harald Saathoff,et al.  A New Ice Nucleation Active Site Parameterization for Desert Dust and Soot , 2017 .

[165]  B. Stevens,et al.  Simulations of marine stratocumulus using a new microphysical parameterization scheme , 1998 .

[166]  W. Nowak,et al.  A Primer for Model Selection: The Decisive Role of Model Complexity , 2018 .

[167]  Stanley G. Benjamin,et al.  A Performance Comparison between Multiphysics and Stochastic Approaches within a North American RAP Ensemble , 2017 .

[168]  Raymond A. Shaw,et al.  Airborne Phase Doppler Interferometry for Cloud Microphysical Measurements , 2008 .

[169]  Alexei Kiselev,et al.  Active sites in heterogeneous ice nucleation—the example of K-rich feldspars , 2017, Science.

[170]  Shouting Gao,et al.  Impacts of ice microphysics on rainfall and thermodynamic processes in the tropical deep convective regime : A 2D cloud-resolving modeling study , 2006 .

[171]  Chiashi Muroi,et al.  Climatological Reproducibility Evaluation and Future Climate Projection of Extreme Precipitation Events in the Baiu Season Using a High-Resolution Non-Hydrostatic RCM in Comparison with an AGCM , 2008 .

[172]  Andrew Stuart,et al.  Earth System Modeling 2.0: A Blueprint for Models That Learn From Observations and Targeted High‐Resolution Simulations , 2017, 1709.00037.

[173]  D. Stone,et al.  Towards constraining climate sensitivity by linear analysis of feedback patterns in thousands of perturbed-physics GCM simulations , 2008 .

[174]  Bernhard Weigand,et al.  Investigation of collision‐induced breakup of raindrops by numerical simulations: First results , 2006 .

[175]  Chris Snyder,et al.  Model Improvement via Systematic Investigation of Physics Tendencies , 2020, Monthly Weather Review.

[176]  E. O'connor,et al.  Doppler lidar measurements of oriented planar ice crystals falling from supercooled and glaciated layer clouds , 2009, 0906.0701.

[177]  H. P. Palmer,et al.  Condensation Processes at Low Temperatures, and the Production of New Sublimation Nuclei by the Splintering of Ice , 1949, Nature.

[178]  Alexei Korolev,et al.  A New Mechanism of Droplet Size Distribution Broadening during Diffusional Growth , 2013 .

[179]  Conrad L. Ziegler,et al.  Retrieval of Thermal and Microphysical Variables in Observed Convective Storms. , 1985 .

[180]  Raymond A. Shaw,et al.  Supersaturation Intermittency in Turbulent Clouds , 2000 .

[181]  A. P. Siebesma,et al.  Controls on precipitation and cloudiness in simulations of trade‐wind cumulus as observed during RICO , 2011 .

[182]  Axel Seifert,et al.  On the Parameterization of Evaporation of Raindrops as Simulated by a One-Dimensional Rainshaft Model , 2008 .

[183]  Craig R. Davison,et al.  Naturally Aspirating Isokinetic Total Water Content Probe: Evaporator Design and Testing , 2009 .

[184]  Zhibo Zhang,et al.  Improvements in Shortwave Bulk Scattering and Absorption Models for the Remote Sensing of Ice Clouds , 2011 .

[185]  E. J. Langham,et al.  The heterogeneous and homogeneous nucleation of supercooled water , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[186]  James Duncan McTaggart-Cowan,et al.  Collision and Breakup of Water Drops at Terminal , 1975 .

[187]  Steven Platnick,et al.  Comparisons of bispectral and polarimetric cloud microphysicalretrievals using LES-Satellite retrieval simulator , 2017 .

[188]  Van Kolpin,et al.  A New Look at the Environmental Kuznets Curve , 2011 .

[189]  S. Mossop,et al.  Ice crystal concentrations in cumulus and stratocumulus clouds , 1972 .

[190]  R. Vogt,et al.  Agile-Beam Phased Array Radar for Weather Observations , 2007 .

[191]  W. Cotton,et al.  New primary ice-nucleation parameterizations in an explicit cloud model , 1992 .

[192]  Andrew Gettelman,et al.  A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests , 2008 .

[193]  Peter V. Hobbs,et al.  The Fragmentation of Freezing Water Droplets in Free Fall , 1968 .

[194]  R. A. Shaw,et al.  Aerosol‐Mediated Glaciation of Mixed‐Phase Clouds: Steady‐State Laboratory Measurements , 2019, Geophysical Research Letters.

[195]  L. Pfister,et al.  Transport and freeze‐drying in the tropical tropopause layer , 2004 .

[196]  George Kuczera,et al.  Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory , 2006 .

[197]  Olivier P. Prat,et al.  A Bayesian Approach for Statistical–Physical Bulk Parameterization of Rain Microphysics. Part I: Scheme Description , 2019, Journal of the Atmospheric Sciences.

[198]  W. Paul Menzel,et al.  INTRODUCING THE NEXT-GENERATION ADVANCED BASELINE IMAGER ON GOES-R , 2005 .

[199]  D. Randall,et al.  100 Years of Earth System Model Development , 2019, Meteorological Monographs.

[200]  Alexander V. Ryzhkov,et al.  The Impact of Size Sorting on the Polarimetric Radar Variables , 2012 .

[201]  Terry L. Clark On Modelling Nucleation and Condensation Theory in Eulerian Spatial Domain , 1974 .

[202]  Larry F. Bliven,et al.  Field observations of multimode raindrop oscillations by high-speed imaging , 2006 .

[203]  S. Belair,et al.  Simulation of an Orographic Precipitation Event during IMPROVE-2. Part II: Sensitivity to the Number of Moments in the Bulk Microphysics Scheme , 2010 .

[204]  Matthias Morzfeld,et al.  A Bayesian Approach for Statistical–Physical Bulk Parameterization of Rain Microphysics. Part II: Idealized Markov Chain Monte Carlo Experiments , 2019 .

[205]  Kenneth C. Young,et al.  Number Fluxes in Equilibrium Raindrop Populations: A Markov Chain Analysis , 1985 .

[206]  R. Rasmussen,et al.  A Wind Tunnel and Theoretical Study of the Melting Behavior of Atmospheric Ice Particles. II: A Theoretical Study for Frozen Drops of Radius < 500 μm , 1982 .

[207]  Raymond A. Shaw,et al.  Aerosol removal and cloud collapse accelerated by supersaturation fluctuations in turbulence , 2017 .

[208]  T. Palmer,et al.  Stochastic parametrization and model uncertainty , 2009 .

[209]  Brenda Dolan,et al.  A Theory-Based Hydrometeor Identification Algorithm for X-Band Polarimetric Radars , 2009 .

[210]  Fan Yang,et al.  Scaling of an Atmospheric Model to Simulate Turbulence and Cloud Microphysics in the Pi Chamber , 2019, Journal of Advances in Modeling Earth Systems.

[211]  Firat Yener Testik,et al.  Outcome regimes of binary raindrop collisions , 2009 .

[212]  Larry Vardiman,et al.  The Generation of Secondary Ice Particles in Clouds by Crystal–Crystal Collision , 1978 .

[213]  Tsutomu Takahashi,et al.  High ice crystal production in winter cumuli over the Japan Sea , 1993 .

[214]  Peter V. Hobbs,et al.  Ice particle concentrations in clouds , 1985 .

[215]  Noah D. Brenowitz,et al.  Prognostic Validation of a Neural Network Unified Physics Parameterization , 2018, Geophysical Research Letters.

[216]  G. Powers,et al.  A Description of the Advanced Research WRF Version 3 , 2008 .

[217]  W. Cooper,et al.  Field Evidence Supporting Quantitative Predictions of Secondary Ice Production Rates , 1987 .

[218]  Karl R. Popper,et al.  The Two Fundamental Problems of the Theory of Knowledge , 2008 .

[219]  Pengfei Zhang,et al.  Quasi-Vertical Profiles—A New Way to Look at Polarimetric Radar Data , 2016 .

[220]  Edwin Kessler,et al.  On the continuity and distribution of water substance in atmospheric circulations , 1995 .

[221]  Miriam Arak Freedman,et al.  The Effect of Crystallinity and Crystal Structure on the Immersion Freezing of Alumina. , 2019, The journal of physical chemistry. A.

[222]  Witold F. Krajewski,et al.  Comparison of Drop Size Distribution Measurements by Impact and Optical Disdrometers , 2001 .

[223]  Alexander V. Ryzhkov,et al.  Rainfall Estimation with a Polarimetric Prototype of WSR-88D , 2005 .

[224]  G. Thompson,et al.  Sensitivity of a simulated midlatitude squall line to parameterization of raindrop breakup , 2012 .

[225]  Harald Saathoff,et al.  Chamber Simulations of Cloud Chemistry: The AIDA Chamber , 2006 .

[226]  G. McFarquhar,et al.  Cloud Ice Properties: In Situ Measurement Challenges , 2017 .

[227]  Heikki Haario,et al.  NWP model forecast skill optimization via closure parameter variations , 2012 .

[228]  Kuan Xu,et al.  A PDF-Based Microphysics Parameterization for Simulation of Drizzling Boundary Layer Clouds , 2009 .

[229]  William R. Cotton,et al.  Fitting Microphysical Observations of Nonsteady Convective Clouds to a Numerical Model: An Application of the Adjoint Technique of Data Assimilation to a Kinematic Model , 1993 .

[230]  B. Stevens,et al.  Numerical simulations of stratocumulus processing of cloud condensation nuclei through , 1996 .

[231]  Gregory Thompson,et al.  Parameterization of Cloud Microphysics Based on the Prediction of Bulk Ice Particle Properties. Part II: Case Study Comparisons with Observations and Other Schemes , 2015 .

[232]  Roland List,et al.  Collision, Coalescence and Breakup of Raindrops. Part I: Experimentally Established Coalescence Efficiencies and Fragment Size Distributions in Breakup , 1982 .

[233]  Hanna Pawlowska,et al.  University of Warsaw Lagrangian Cloud Model (UWLCM) 1.0: a modern large-eddy simulation tool for warm cloud modeling with Lagrangian microphysics , 2019, Geoscientific Model Development.

[234]  Sanghun Lim,et al.  Dual‐polarization radar signatures in snowstorms: Role of snowflake aggregation , 2015 .

[235]  R. Leung,et al.  A review on regional convection‐permitting climate modeling: Demonstrations, prospects, and challenges , 2015, Reviews of geophysics.

[236]  Jorgen B. Jensen,et al.  Turbulent Mixing, Spectral Evolution and Dynamics in a Warm Cumulus Cloud , 1985 .

[237]  Jerry M. Straka,et al.  Bulk Hydrometeor Classification and Quantification Using Polarimetric Radar Data: Synthesis of Relations , 2000 .

[238]  Steven Platnick,et al.  Comparisons of bispectral and polarimetric retrievals of marine boundary layer cloud microphysics: case studies using a LES–satellite retrieval simulator , 2018, Atmospheric Measurement Techniques.

[239]  A. Khain,et al.  Physical Processes in Clouds and Cloud Modeling , 2018 .

[240]  Olivier P. Prat,et al.  On the Influence of Raindrop Collision Outcomes on Equilibrium Drop Size Distributions , 2012 .

[241]  Jason A. Milbrandt,et al.  Parameterization of the Bulk Liquid Fraction on Mixed-Phase Particles in the Predicted Particle Properties (P3) Scheme: Description and Idealized Simulations , 2019, Journal of the Atmospheric Sciences.

[242]  Kshudiram Saha Physics of Cloud and Precipitation , 2008 .

[243]  Alan Gadian,et al.  Cloud‐aerosol interactions for boundary layer stratocumulus in the Lagrangian Cloud Model , 2010 .

[244]  Alexander V. Ryzhkov,et al.  The Impact of Evaporation on Polarimetric Characteristics of Rain: Theoretical Model and Practical Implications , 2009 .

[245]  S. Twomey Computations of Rain Formation by Coalescence , 1966 .

[246]  Z. Levin,et al.  Rain Production in Convective Clouds As Simulated in an Axisymmetric Model with Detailed Microphysics. Part I : Description of the Model , 1996 .

[247]  Philip S. Brown Analysis and Parameterization of the Combined Coalescence, Breakup, and Evaporation Processes. , 1993 .

[248]  W. Cotton Numerical Simulation of Precipitation Development in Supercooled Cumuli—Part II , 1972 .

[249]  B. Efron Why Isn't Everyone a Bayesian? , 1986 .

[250]  Arthur L. Rangno,et al.  Fragmentation of Freezing Drops in Shallow Maritime Frontal Clouds , 2008 .

[251]  James R. Mahoney,et al.  Numerical Modeling of Advection and Diffusion of Urban Area Source Pollutants , 1972 .

[252]  William M. Putman,et al.  Global Cloud-Resolving Models , 2019, Current Climate Change Reports.

[253]  N. Fletcher Size Effect in Heterogeneous Nucleation , 1958 .

[254]  M. Kirkpatrick,et al.  The impact of humidity above stratiform clouds on indirect aerosol climate forcing , 2004, Nature.

[255]  Ralf Bennartz,et al.  A triple‐frequency approach to retrieve microphysical snowfall parameters , 2011 .

[256]  Fabian Hoffmann,et al.  Inhomogeneous Mixing in Lagrangian Cloud Models: Effects on the Production of Precipitation Embryos , 2018, Journal of the Atmospheric Sciences.

[257]  Alexei Korolev,et al.  Reconstruction of the Sizes of Spherical Particles from Their Shadow Images. Part I: Theoretical Considerations , 2007 .

[258]  William R. Cotton,et al.  The Impact of Hail Size on Simulated Supercell Storms , 2004 .

[259]  H. D. Orville,et al.  Numerical Modeling of Precipitation and Cloud Shadow Effects on Mountain-Induced Cumuli , 1969 .

[260]  Yuqing Qiu,et al.  Pore condensation and freezing is responsible for ice formation below water saturation for porous particles , 2019, Proceedings of the National Academy of Sciences.

[261]  S. J. Weiss,et al.  An Overview of the 2010 Hazardous Weather Testbed Experimental Forecast Program Spring Experiment , 2012 .

[262]  George Kuczera,et al.  Bayesian analysis of input uncertainty in hydrological modeling: 2. Application , 2006 .

[263]  Matthew R. Kumjian,et al.  Resonance Scattering Effects in Wet Hail Observed with a Dual-X-Band-Frequency, Dual-Polarization Doppler on Wheels Radar , 2018, Journal of Applied Meteorology and Climatology.

[264]  A. Hill,et al.  Diagnosis of systematic differences between multiple parametrizations of warm rain microphysics using a kinematic framework , 2012 .

[265]  Fan Yang,et al.  Nonthermal ice nucleation observed at distorted contact lines of supercooled water drops. , 2018, Physical review. E.

[266]  Ann M. Fridlind,et al.  A FIRE-ACE/SHEBA Case Study of Mixed-Phase Arctic Boundary Layer Clouds: Entrainment Rate Limitations on Rapid Primary Ice Nucleation Processes , 2012 .

[267]  Jen-Ping Chen,et al.  Simulation of Cloud Microphysical and Chemical Processes Using a Multicomponent Framework. Part II: Microphysical Evolution of a Wintertime Orographic Cloud , 1999 .

[268]  H. Weickmann,et al.  types of snowfall , 1973 .

[269]  Bernd Kärcher,et al.  A large‐eddy model for cirrus clouds with explicit aerosol and ice microphysics and Lagrangian ice particle tracking , 2010 .

[270]  S. Chai,et al.  A new aspect of condensation theory , 1980 .

[271]  Guifu Zhang,et al.  Polarimetric Radar Estimators Based on a Constrained Gamma Drop Size Distribution Model , 2004 .

[272]  Pavlos Kollias,et al.  Separating Cloud and Drizzle Radar Moments during Precipitation Onset Using Doppler Spectra , 2013 .

[273]  Derek J. Posselt,et al.  Assimilation of Dual-Polarization Radar Observations in Mixed- and Ice-Phase Regions of Convective Storms: Information Content and Forward Model Errors , 2015 .

[274]  William R. Cotton,et al.  New RAMS cloud microphysics parameterization. Part II: The two-moment scheme , 1997 .

[275]  Guifu Zhang,et al.  Improving Parameterization of Rain Microphysics with Disdrometer and Radar Observations , 2006 .

[276]  K. D. Beheng,et al.  A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: Model description , 2006 .

[277]  Andreas Peckhaus,et al.  The Fifth International Workshop on Ice Nucleation phase 2 (FIN-02): laboratory intercomparison of ice nucleation measurements , 2018, Atmospheric Measurement Techniques.

[278]  T. Poinsot,et al.  Contrail formation in aircraft wakes , 2004, Journal of Fluid Mechanics.

[279]  Sylwester Arabas,et al.  Large-Eddy Simulations of Trade Wind Cumuli Using Particle-Based Microphysics with Monte Carlo Coalescence , 2013 .

[280]  Siegfried Raasch,et al.  A Cloud Microphysics Parameterization for Shallow Cumulus Clouds Based on Lagrangian Cloud Model Simulations , 2018, Journal of the Atmospheric Sciences.

[281]  H. Kojima,et al.  The variation with temperature of the magnetic susceptibility of some of the transition elements , 1961, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[282]  M. Smoluchowski,et al.  Drei Vortrage uber Diffusion, Brownsche Bewegung und Koagulation von Kolloidteilchen , 1916 .

[283]  M. Wendisch,et al.  Mixed-Phase Clouds: Progress and Challenges , 2017 .

[284]  R. Rauber,et al.  Numerical Simulation of the Effects of Varying Ice Crystal Nucleation Rates and Aggregation Processes on Orographic Snowfall , 1986 .

[285]  Corinna Hoose,et al.  Global modeling of mixed‐phase clouds: The albedo and lifetime effects of aerosols , 2011 .

[286]  G. Bryan,et al.  Sensitivity of a Simulated Squall Line to Horizontal Resolution and Parameterization of Microphysics , 2012 .

[287]  G. McFarquhar,et al.  Ice properties of single-layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment: 2. Model results , 2007 .

[288]  J. Latham,et al.  The electrostatic forces on charged ice crystals separated by small distances in an electric field , 1970 .

[289]  Constantin Andronache,et al.  Remote Sensing of Clouds and Precipitation , 2018 .

[290]  Roscoe R. Braham,et al.  What is the Role of Ice in Summer Rain-Showers?. , 1964 .

[291]  Akio Arakawa,et al.  CLOUDS AND CLIMATE: A PROBLEM THAT REFUSES TO DIE. Clouds of many , 2022 .

[292]  Omar M. Knio,et al.  Polynomial Chaos–Based Bayesian Inference of K-Profile Parameterization in a General Circulation Model of the Tropical Pacific , 2015, 1510.07476.

[293]  R. Rasmussen,et al.  Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model , 1998 .

[294]  Matthew R. Kumjian,et al.  Insights into the evolving microphysical and kinematic structure of northeastern U.S. winter storms from dual-Polarization doppler radar , 2017 .

[295]  P. Wilson Supercooling of Water , 2012 .

[296]  J. Harrington,et al.  Dynamical and Microphysical Evolution during Mixed-Phase Cloud Glaciation Simulated Using the Bulk Adaptive Habit Prediction Model , 2014 .

[297]  Xu Liu,et al.  An Efficient Method for Microphysical Property Retrievals in Vertically Inhomogeneous Marine Water Clouds Using MODIS‐CloudSat Measurements , 2019, Journal of Geophysical Research: Atmospheres.

[298]  J. Dudhia,et al.  A Revised Approach to Ice Microphysical Processes for the Bulk Parameterization of Clouds and Precipitation , 2004 .

[299]  Martin Gallagher,et al.  Cloud‐resolving simulations of intense tropical Hector thunderstorms: Implications for aerosol–cloud interactions , 2006 .

[300]  Robin J. Hogan,et al.  Retrieving Stratocumulus Drizzle Parameters Using Doppler Radar and Lidar , 2005 .

[301]  Sonia Lasher-Trapp,et al.  Broadening of droplet size distributions from entrainment and mixing in a cumulus cloud , 2005 .

[302]  Zhijin Hu,et al.  Cloud-resolving model for weather modification in China , 2012 .

[303]  Ziad S. Haddad,et al.  A Distributed Small Satellite Approach for Measuring Convective Transports in the Earth’s Atmosphere , 2020, IEEE Transactions on Geoscience and Remote Sensing.

[304]  M. Trosset,et al.  Bayesian recursive parameter estimation for hydrologic models , 2001 .

[305]  Edwin X. Berry A Mathematical Framework for Cloud Models , 1969 .

[306]  Jen-Ping Chen,et al.  A Classical-Theory-Based Parameterization of Heterogeneous Ice Nucleation by Mineral Dust, Soot, and Biological Particles in a Global Climate Model , 2010 .

[307]  Andrew Gettelman,et al.  Advanced two-moment bulk microphysics for global models. Part I: off-line tests and comparison with other schemes. , 2015 .

[308]  Bogdan Rosa,et al.  Turbulent collision of inertial particles: point-particle based, hybrid simulations and beyond , 2009 .

[309]  Sergey Y. Matrosov,et al.  X-Band Polarimetric Radar Measurements of Rainfall , 2002 .

[310]  Derek J. Posselt,et al.  A Bayesian Examination of Deep Convective Squall-Line Sensitivity to Changes in Cloud Microphysical Parameters , 2016 .

[311]  William R. Cotton,et al.  A Binned Approach to Cloud-Droplet Riming Implemented in a Bulk Microphysics Model , 2008 .

[312]  Keith Beven,et al.  Comment on "Hydrological forecasting uncertainty assessment: incoherence of the GLUE methodology" by Pietro Mantovan and Ezio Todini , 2007 .

[313]  M. Kumjian,et al.  Polarimetric Radar Signatures of Dendritic Growth Zones within Colorado Winter Storms , 2015 .

[314]  Hailong Wang,et al.  Evaluation of Scalar Advection Schemes in the Advanced Research WRF Model Using Large-Eddy Simulations of Aerosol–Cloud Interactions , 2009 .

[315]  L. Ruby Leung,et al.  Prediction of cloud droplet number in a general , 1997 .

[316]  Alessandro Battaglia,et al.  Dual‐frequency radar Doppler spectral retrieval of rain drop size distributions and entangled dynamics variables , 2015 .

[317]  Sisi Chen,et al.  Turbulence Effects of Collision Efficiency and Broadening of Droplet Size Distribution in Cumulus Clouds , 2018 .

[318]  Chris Snyder,et al.  Increasing the Skill of Probabilistic Forecasts: Understanding Performance Improvements from Model-Error Representations , 2015 .

[319]  S. Shima,et al.  The super‐droplet method for the numerical simulation of clouds and precipitation: a particle‐based and probabilistic microphysics model coupled with a non‐hydrostatic model , 2007, physics/0701103.

[320]  J. Mellado The evaporatively driven cloud-top mixing layer , 2010, Journal of Fluid Mechanics.

[321]  Kevin W. Manning,et al.  Experiences with 0–36-h Explicit Convective Forecasts with the WRF-ARW Model , 2008 .

[322]  Derek J. Posselt,et al.  Bayesian Retrievals of Vertically Resolved Cloud Particle Size Distribution Properties , 2017 .

[323]  Matthias Steiner,et al.  Climatological Characterization of Three-Dimensional Storm Structure from Operational Radar and Rain Gauge Data , 1995 .

[324]  Roy Rasmussen,et al.  Multiparameter radar measurements in Colorado convective storms. Part I. Graupel melting studies , 1986 .

[325]  Xavier Fettweis,et al.  Cloud microphysics and circulation anomalies control differences in future Greenland melt , 2019, Nature Climate Change.

[326]  Sanjiva K. Lele,et al.  Large Eddy Simulation of Early Stage Contrails: Effect of Atmospheric Properties , 2006 .

[327]  Matthew Bailey,et al.  Growth Rates and Habits of Ice Crystals between −20° and −70°C , 2004 .

[328]  Anders Johansen,et al.  Adding particle collisions to the formation of asteroids and Kuiper belt objects via streaming instabilities , 2011, 1111.0221.

[329]  Olivier P. Prat,et al.  A Moment-Based Polarimetric Radar Forward Operator for Rain Microphysics , 2019, Journal of Applied Meteorology and Climatology.

[330]  S. Woods,et al.  Aircraft Observations of Cumulus Microphysics Ranging from the Tropics to Midlatitudes: Implications for a “New” Secondary Ice Process , 2017 .

[331]  A. Ryzhkov,et al.  Polarimetry for Weather Surveillance Radars , 1999 .

[332]  Frank S. Ham,et al.  Shape-preserving solutions of the time-dependent diffusion equation , 1959 .

[333]  S. C. Heever,et al.  Make It a Double? Sobering Results from Simulations Using Single-Moment Microphysics Schemes , 2015 .

[334]  Hui Wan,et al.  Physics–Dynamics Coupling in Weather, Climate, and Earth System Models: Challenges and Recent Progress , 2016, Monthly Weather Review.

[335]  Claudio Mazzoleni,et al.  A Laboratory Facility to Study Gas–Aerosol–Cloud Interactions in a Turbulent Environment: The Π Chamber , 2015 .

[336]  Peter V. Hobbs,et al.  The Electrification of an Ice Sphere Moving through Natural Clouds , 1966 .

[337]  Michela Paganini,et al.  CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters with Generative Adversarial Networks , 2017, ArXiv.

[338]  John Hallett,et al.  Nucleation and Growth of Ice Crystals in Water and Biological Systems , 1968 .

[339]  Zev Levin,et al.  The Evolution of Raindrop Spectra. Part II: Collisional Collection/Breakup and Evaporation in a Rainshaft , 1989 .

[340]  S. M. Sekelsky,et al.  Application of Dual-Frequency Millimeter-Wave Doppler Spectra for the Retrieval of Drop Size Distributions and Vertical Air Motion in Rain , 1999 .

[341]  R. Rasmussen,et al.  A Wind Tunnel Investigation of the Rate of Evaporation of Small Water Drops Falling at Terminal Velocity in Air , 1971 .

[342]  Yousuke Sato,et al.  Predicting the morphology of ice particles in deep convection using the super-droplet method: development and evaluation of SCALE-SDM 0.2.5-2.2.0/2.2.1 , 2020 .

[343]  Yefim L. Kogan,et al.  The simulation of a convective cloud in a 3-D model with explicit microphysics , 1991 .

[344]  Edwin X. Berry,et al.  An Analysis of Cloud Drop Growth by Collection: Part I. Double Distributions , 1974 .

[345]  R. P. Lawson,et al.  Ice particles in the upper anvil regions of midlatitude continental thunderstorms: the case for frozen-drop aggregates , 2013 .

[346]  Mark Z. Jacobson,et al.  Numerical Solution to Drop Coalescence/Breakup with a Volume-Conserving, Positive-Definite, and Unconditionally Stable Scheme , 2011 .

[347]  Derek J. Posselt,et al.  Quantitative Sensitivity Analysis of Physical Parameterizations for Cases of Deep Convection in the NASA GEOS-5 , 2016 .

[348]  C. Saunders,et al.  The Influence of Electric Fields on the Aggregation of Ice Crystals , 1975 .

[349]  E. Berry,et al.  Cloud Droplet Growth by Collection , 1967 .

[350]  Piotr K. Smolarkiewicz,et al.  Numerical Simulation of Cloud–Clear Air Interfacial Mixing: Homogeneous versus Inhomogeneous Mixing , 2009 .

[351]  Ling Jin,et al.  Evaluating clouds, aerosols, and their interactions in three global climate models using satellite simulators and observations , 2014 .

[352]  Harald Saathoff,et al.  Pre-activation of ice-nucleating particles by the pore condensation and freezing mechanism , 2015 .

[353]  A. Ryzhkov,et al.  Estimation of Rainfall Based on the Results of Polarimetric Echo Classification , 2007 .

[354]  Raymond A. Shaw,et al.  FLUCTUATIONS AND LUCK IN DROPLET GROWTH BY COALESCENCE , 2005 .

[355]  Derek J. Posselt,et al.  Robust Characterization of Model Physics Uncertainty for Simulations of Deep Moist Convection , 2010 .

[356]  Habib N. Najm,et al.  Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems , 2008, J. Comput. Phys..

[357]  Bastiaan van Diedenhoven,et al.  Remote Sensing of Crystal Shapes in Ice Clouds , 2018 .

[358]  Chengzhu Zhang,et al.  The Effects of Surface Kinetics on Crystal Growth and Homogeneous Freezing in Parcel Simulations of Cirrus , 2015 .

[359]  Simon Unterstrasser,et al.  Optimisation of the simulation particle number in a Lagrangian ice microphysical model , 2014 .

[360]  J. K. Ayers,et al.  Use of cloud radar Doppler spectra to evaluate stratocumulus drizzle size distributions in large-eddy simulations with size-resolved microphysics. , 2017, Journal of applied meteorology and climatology.

[361]  P. H. Lauritzena,et al.  Evaluating advection / transport schemes using interrelated tracers , scatter plots and numerical mixing diagnostics , 2011 .

[362]  Scott E. Giangrande,et al.  The Characteristics of Tropical and Midlatitude Mesoscale Convective Systems as Revealed by Radar Wind Profilers , 2019, Journal of Geophysical Research: Atmospheres.

[363]  A. Ono Some Aspects of the Natural Glaciation Processes in Relatively Warm Maritime Clouds , 1971 .

[364]  Ann M. Fridlind,et al.  Evaluation of Hydrometeor Phase and Ice Properties in Cloud-Resolving Model Simulations of Tropical Deep Convection Using Radiance and Polarization Measurements , 2012 .

[365]  J. Harrington,et al.  Advection of Coupled Hydrometeor Quantities in Bulk Cloud Microphysics Schemes , 2016 .

[366]  J. Harrington,et al.  Predicting Ice Shape Evolution in a Bulk Microphysics Model , 2017 .

[367]  Teiji Kunihiro,et al.  Application of the renormalization-group method to the reduction of transport equations , 2006 .

[368]  Gregory J. Tripoli,et al.  The Spectral Ice Habit Prediction System (SHIPS). Part I: Model Description and Simulation of the Vapor Deposition Process , 2007 .

[369]  V. Chandrasekar,et al.  Classification of Hydrometeors Based on Polarimetric Radar Measurements: Development of Fuzzy Logic and Neuro-Fuzzy Systems, and In Situ Verification , 2000 .

[370]  Basil John Mason,et al.  Modification of the size distribution of falling raindrops by coalescence , 1954 .

[371]  Matthew R. Kumjian,et al.  A Probabilistic Radar Forward Model for Branched Planar Ice Crystals , 2019, Journal of Applied Meteorology and Climatology.

[372]  M. Wilkinson,et al.  Large Deviation Analysis of Rapid Onset of Rain Showers. , 2016, Physical review letters.

[373]  F. Shuman,et al.  An Operational Six-Layer Primitive Equation Model , 1968 .

[374]  Ulrike Lohmann,et al.  Erratum: ``Prediction of the number of cloud droplets in the ECHAM GCM'' , 1999 .

[375]  Hanna Pawlowska,et al.  A new method for large-eddy simulations of clouds with Lagrangian droplets including the effects of turbulent collision , 2012 .

[376]  Cecile Hannay,et al.  Practice and philosophy of climate model tuning across six U.S. modeling centers. , 2017, Geoscientific model development.

[377]  B. Cairns,et al.  Interactive comment on “Remote sensing of ice crystal asymmetry parameter using multi-directional polarization measurements – Part 1: Methodology and evaluation with simulated measurements” by B. van Diedenhoven et al , 2012 .

[378]  E. Kessler On the distribution and continuity of water substance in atmospheric circulations , 1969 .

[379]  L. R. Koenig,et al.  Numerical Modeling of Ice Deposition , 1971 .

[380]  N. Orikasa,et al.  Cloud Condensation Nuclei and Immersion Freezing Abilities of Al2O3 and Fe2O3 Particles Measured with the Meteorological Research Institute's Cloud Simulation Chamber , 2019, Journal of the Meteorological Society of Japan. Ser. II.

[381]  E. Boss,et al.  The Plankton, Aerosol, Cloud, Ocean Ecosystem Mission: Status, Science, Advances , 2019, Bulletin of the American Meteorological Society.

[382]  C. Dearden,et al.  Exploring the Diabatic Role of Ice Microphysical Processes in Two North Atlantic Summer Cyclones , 2016 .

[383]  John Latham,et al.  Laboratory studies of riming and its relation to ice splinter production , 1980 .

[384]  Andrew Gettelman,et al.  A unified parameterization of clouds and turbulence using CLUBB and subcolumns in the Community Atmosphere Model , 2015 .

[385]  Ann M. Fridlind,et al.  Ice properties of single‐layer stratocumulus during the Mixed‐Phase Arctic Cloud Experiment: 1. Observations , 2007 .

[386]  B. Stevens,et al.  Elements of the microphysical structure of numerically simulated nonprecipitating stratocumulus , 1996 .

[387]  Bernhard Weigand,et al.  Numerical Investigation of Collision-Induced Breakup of Raindrops. Part II: Parameterizations of Coalescence Efficiencies and Fragment Size Distributions , 2010 .

[388]  Tim E. Jupp,et al.  Land-surface parameter optimisation using data assimilation techniques: the adJULES system V1.0 , 2016 .

[389]  John Hallett,et al.  Ice particle generation during evaporation , 1994 .

[390]  G. Feingold,et al.  An Efficient Numerical Solution to the Stochastic Collection Equation , 1987 .

[391]  Edwin Hirst,et al.  PHIPS-HALO: the airborne Particle Habit Imaging and Polar Scattering probe - Part 1: Design and operation , 2016 .

[392]  Daniel Rothenberg,et al.  How Uncertainty in Field Measurements of Ice Nucleating Particles Influences Modeled Cloud Forcing , 2018 .

[393]  Jean-François Gayet,et al.  The deposition coefficient and its role for cirrus clouds , 2003 .

[394]  William R. Cotton,et al.  Impacts of Nucleating Aerosol on Florida Storms. Part I: Mesoscale Simulations , 2006 .

[395]  Christoph Siewert,et al.  The Geometry of Rimed Aggregate Snowflakes: A Modeling Study , 2019, Journal of Advances in Modeling Earth Systems.

[396]  Henri Sauvageot,et al.  Cloud Liquid Water and Ice Content Retrieval by Multiwavelength Radar , 2003 .

[397]  Pierre Gentine,et al.  Could Machine Learning Break the Convection Parameterization Deadlock? , 2018, Geophysical Research Letters.

[398]  Corinna Hoose,et al.  Heterogeneous ice nucleation on atmospheric aerosols: a review of results from laboratory experiments , 2012 .

[399]  E. James Davis,et al.  Breakup of levitated frost particles , 1998 .

[400]  Graeme A. Bird,et al.  Approach to Translational Equilibrium in a Rigid Sphere Gas , 1963 .

[401]  Raymond A. Shaw,et al.  Homogeneous and Inhomogeneous Mixing in Cumulus Clouds: Dependence on Local Turbulence Structure , 2009 .

[402]  Benjamin J. Murray,et al.  Heterogeneous freezing of water droplets containing kaolinite particles , 2011 .

[403]  Song‐You Hong,et al.  The WRF Single-Moment 6-Class Microphysics Scheme (WSM6) , 2006 .

[404]  Anna Jaruga,et al.  libcloudph++ 2.0: aqueous-phase chemistry extension of the particle-based cloud microphysics scheme , 2018, Geoscientific Model Development.

[405]  Keng C Chou,et al.  Transient Phase of Ice Observed by Sum Frequency Generation at the Water/Mineral Interface During Freezing. , 2017, The journal of physical chemistry letters.

[406]  Steven K. Krueger,et al.  Cloud System Modeling , 2000 .

[407]  Steven Platnick,et al.  An Assessment of the Impacts of Cloud Vertical Heterogeneity on Global Ice Cloud Data Records From Passive Satellite Retrievals , 2018, Journal of Geophysical Research: Atmospheres.

[408]  V. Chandrasekar,et al.  A New Dual-Polarization Radar Rainfall Algorithm: Application in Colorado Precipitation Events , 2011 .

[409]  Andrew Gettelman,et al.  Microphysical process rates and global aerosol–cloud interactions , 2013 .

[410]  Jerry M. Straka,et al.  Polarimetric Signatures above the Melting Layer in Winter Storms: An Observational and Modeling Study , 2013 .

[411]  Irving Langmuir,et al.  THE PRODUCTION OF RAIN BY A CHAIN REACTION IN CUMULUS CLOUDS AT TEMPERATURES ABOVE FREEZING , 1948 .

[412]  A. Pier Siebesma,et al.  Entrainment and detrainment in cumulus convection: an overview , 2013 .

[413]  Athanasios Nenes,et al.  Sensitivity of the global distribution of cirrus ice crystal concentration to heterogeneous freezing , 2010 .

[414]  Valery Shcherbakov,et al.  Indications for stellar-crystal fragmentation in Arctic clouds , 2009 .

[415]  Robert McGraw,et al.  Numerical advection of correlated tracers: preserving particle size/composition moment sequences during transport of aerosol mixtures , 2007 .

[416]  Timothy J. Garrett,et al.  Fall speed measurement and high-resolution multi-angle photography of hydrometeors in free fall , 2012 .

[417]  David B. Johnson,et al.  Numerical Simulation of Ice Particle Growth in a Cloud of Supercooled Water Droplets , 1972 .

[418]  Michael Schönhuber,et al.  The 2D-Video-Distrometer , 2008 .

[419]  William R. Cotton,et al.  The Weather Modification Association’s Response to the National Research Council’s Report Titled, “Critical Issues in Weather Modification Research” , 2004 .

[420]  C. Morris [Why Isn't Everyone a Bayesian?]: Comment , 1986 .

[421]  Jen-Ping Chen,et al.  Microphysical structure of a developing convective snow cloud simulated by an improved version of the multi‐dimensional bin model , 2010 .

[422]  Yan Zhang,et al.  Cylindrical Polarimetric Phased Array Radar: Beamforming and Calibration for Weather Applications , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[423]  Judith Berner,et al.  Sensitivity of Simulated Deep Convection to a Stochastic Ice Microphysics Framework , 2019, Journal of Advances in Modeling Earth Systems.

[424]  Song-You Hong,et al.  Development of an Effective Double-Moment Cloud Microphysics Scheme with Prognostic Cloud Condensation Nuclei (CCN) for Weather and Climate Models , 2010 .

[425]  G. Grell,et al.  A North American Hourly Assimilation and Model Forecast Cycle: The Rapid Refresh , 2016 .

[426]  J. Curry,et al.  A New Double-Moment Microphysics Parameterization for Application in Cloud and Climate Models. Part I: Description , 2005 .

[427]  V. V. Aristov,et al.  Direct methods for solving the Boltzmann equations: Comparisons with direct simulation Monte Carlo and possibilities , 2019, Physics of Fluids.

[428]  W Cantrell,et al.  Influence of Turbulent Fluctuations on Cloud Droplet Size Dispersion and Aerosol Indirect Effects. , 2018, Journal of the atmospheric sciences.

[429]  Derek J. Posselt,et al.  On the Relative Sensitivity of a Tropical Deep Convective Storm to Changes in Environment and Cloud Microphysical Parameters , 2019, Journal of the Atmospheric Sciences.

[430]  Paul J. DeMott,et al.  An Empirical Parameterization of Heterogeneous Ice Nucleation for Multiple Chemical Species of Aerosol , 2008 .

[431]  Christopher J. Duffy,et al.  Parameter estimation of a physically-based land surface hydrologic model using an ensemble Kalman filter: A multivariate real-data experiment , 2015 .

[432]  D. Parsons,et al.  Size Distributions of Precipitation Particles in Frontal Clouds. , 1979 .

[433]  J. Dudhia,et al.  High resolution coupled climate-runoff simulations of seasonal snowfall over Colorado: A process study of current and warmer climate , 2011 .

[434]  Paul Ginoux,et al.  Modeling the interactions between aerosols and liquid water clouds with a self-consistent cloud scheme in a general circulation model , 2007 .

[435]  Heikki Haario,et al.  Ensemble prediction and parameter estimation system: the method , 2012 .

[436]  Bernhard Weigand,et al.  Numerical Investigation of Collision-Induced Breakup of Raindrops. Part I: Methodology and Dependencies on Collision Energy and Eccentricity , 2010 .

[437]  Alexander V. Ryzhkov,et al.  Cloud Microphysics Retrieval Using S-Band Dual-Polarization Radar Measurements , 1999 .

[438]  Peter V. Hobbs,et al.  Fall speeds and masses of solid precipitation particles , 1974 .

[439]  L. Randall Koenig,et al.  Drop Freezing Through Drop Breakup , 1965 .

[440]  Olivier P. Prat,et al.  A General N-Moment Normalization Method for Deriving Raindrop Size Distribution Scaling Relationships , 2019, Journal of Applied Meteorology and Climatology.

[441]  C. Schär,et al.  Towards climate simulations at cloud-resolving scales , 2008 .

[442]  Dorota Jarecka,et al.  Homogeneity of the Subgrid-Scale Turbulent Mixing in Large-Eddy Simulation of Shallow Convection , 2013 .

[443]  H. Morrison,et al.  A Novel Approach for Representing Ice Microphysics in Models: Description and Tests Using a Kinematic Framework , 2007 .

[444]  Harald Saathoff,et al.  A comprehensive parameterization of heterogeneous ice nucleation of dust surrogate: laboratory study with hematite particles and its application to atmospheric models , 2014 .

[445]  M. Dubey,et al.  The potential impacts of pollution on a nondrizzling stratus deck : Does aerosol number matter more than type? , 2008 .

[446]  Mikhail Ovchinnikov,et al.  Laboratory measurements and model sensitivity studies of dust deposition ice nucleation , 2012 .

[447]  W. T. Scott,et al.  Analytic Studies of Cloud Droplet Coalescence I , 1968 .

[448]  M. Spaans,et al.  Monte Carlo Simulation of Particle Interactions at High Dynamic Range: Advancing beyond the Googol , 2008, 0804.4449.

[449]  Larry F. Bliven,et al.  Toward a Physical Characterization of Raindrop Collision Outcome Regimes , 2011 .

[450]  John M. Haynes,et al.  COSP: Satellite simulation software for model assessment , 2011 .

[451]  P. J. Rasch,et al.  Three‐Moment Representation of Rain in a Bulk Microphysics Model , 2019, Journal of Advances in Modeling Earth Systems.

[452]  Mengistu Wolde,et al.  A new look at the environmental conditions favorable to secondary ice production , 2020 .

[453]  F. Ludlam,et al.  The production of showers by the coalescence of cloud droplets , 1951 .

[454]  P. O'Gorman,et al.  Using Machine Learning to Parameterize Moist Convection: Potential for Modeling of Climate, Climate Change, and Extreme Events , 2018, Journal of Advances in Modeling Earth Systems.

[455]  Pengfei Zhang,et al.  Derivation of Aerosol Profiles for MC3E Convection Studies and Use in Simulations of the 20 May Squall Line Case , 2017 .

[456]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases : an account of the kinetic theory of viscosity, thermal conduction, and diffusion in gases , 1954 .

[457]  Benjamin J. Murray,et al.  Ice nucleation by fertile soil dusts: relative importance of mineral and biogenic components , 2014 .

[458]  D. A. Johnson,et al.  Charge separation due to riming in an electric field , 1972 .

[459]  Mark Pinsky,et al.  Supersaturation and diffusional droplet growth in liquid clouds: Polydisperse spectra , 2014 .

[460]  Alexander V. Ryzhkov,et al.  Polarimetric method for ice water content determination , 1996 .

[461]  Mark D. Tarn,et al.  The ice-nucleating ability of quartz immersed in water and its atmospheric importance compared to K-feldspar , 2019, Atmospheric Chemistry and Physics.

[462]  Pierre Gentine,et al.  Deep learning to represent subgrid processes in climate models , 2018, Proceedings of the National Academy of Sciences.

[463]  Susan Hartmann,et al.  Heterogeneous ice nucleation: exploring the transition from stochastic to singular freezing behavior , 2011 .

[464]  Jon Nelson,et al.  Growth mechanisms to explain the primary and secondary habits of snow crystals , 2001 .

[465]  Wojciech W. Grabowski,et al.  Representation of turbulent mixing and buoyancy reversal in bulk cloud models , 2007 .

[466]  Rebecca D. Adams-Selin,et al.  Impact of Graupel Parameterization Schemes on Idealized Bow Echo Simulations , 2013 .

[467]  P. Dirmeyer,et al.  The Plumbing of Land Surface Models: Benchmarking Model Performance , 2015 .

[468]  N. Roberts,et al.  Realism of Rainfall in a Very High-Resolution Regional Climate Model , 2012 .

[469]  R. C. Srivastava On the Role of Coalescence between Raindrops in Shaping Their Size Distribution1 , 1967 .

[470]  Chengzhu Zhang,et al.  Including Surface Kinetic Effects in Simple Models of Ice Vapor Diffusion , 2014 .

[471]  Roy Rasmussen,et al.  Idealized Simulations of a Squall Line from the MC3E Field Campaign Applying Three Bin Microphysics Schemes: Dynamic and Thermodynamic Structure , 2017 .

[472]  Jean-Pierre Pinty,et al.  A comprehensive two‐moment warm microphysical bulk scheme. I: Description and tests , 2000 .

[473]  A. Kovetz,et al.  The Effect of Coalescence and Condensation on Rain Formation in a Cloud of Finite Vertical Extent , 1969 .

[474]  Cosma Rohilla Shalizi,et al.  Philosophy and the practice of Bayesian statistics. , 2010, The British journal of mathematical and statistical psychology.

[475]  A. Pokrovsky,et al.  Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: Model description and possible applications , 2004 .

[476]  H. Morrison,et al.  Comparison of Bulk and Bin Warm-Rain Microphysics Models Using a Kinematic Framework , 2007 .

[477]  R. C. Srivastava,et al.  Evolution of Raindrop Size Distribution by Coalescence, Breakup, and Evaporation: Theory and Observations , 1995 .

[478]  T. Stein,et al.  THE DYMECS PROJECT A Statistical Approach for the Evaluation of Convective Storms in High-Resolution NWP Models , 2015 .

[479]  W. Grabowski,et al.  Broadening of Cloud Droplet Spectra through Eddy Hopping: Turbulent Adiabatic Parcel Simulations , 2017 .

[480]  Christopher J. Rutland,et al.  A new droplet collision algorithm , 2000 .

[481]  Jothiram Vivekanandan,et al.  Multiparameter Radar Measurements in Colorado Convective Storms. Part II: Hail Detection Studies , 1986 .

[482]  Adrian M. Tompkins,et al.  649 A new prognostic bulk microphysics scheme for the IFS , 2012 .

[483]  Ann M. Fridlind,et al.  Variation of Ice Crystal Size, Shape and Asymmetry Parameter in Tops of Convective Storm Systems Observed during SEAC4RS , 2014 .

[484]  Jorgen B. Jensen,et al.  Condensational Growth of Drops Formed on Giant Sea-Salt Aerosol Particles , 2017 .

[485]  Peter V. Hobbs,et al.  The Influence of Environmental Parameters on the Freezing and Fragmentation of Suspended Water Drops , 1967 .

[486]  Marion Mittermaier,et al.  A long‐term assessment of precipitation forecast skill using the Fractions Skill Score , 2013 .

[487]  Bernd Krcher,et al.  Interactive comment on "Supersaturation, dehydration, and denitrification in Arctic cirrus , 2005 .

[488]  S. Mossop,et al.  The production of secondary ice particles during riming , 1974 .

[489]  Andrew I. Barrett,et al.  Rapid ice aggregation process revealed through triple-wavelength Doppler spectrum radar analysis , 2018, Atmospheric Chemistry and Physics.

[490]  Roland List,et al.  Collision, Coalescence and Breakup of Raindrops. Part II: Parameterization of Fragment Size Distributions , 1982 .

[491]  Angelos Michaelides,et al.  Unravelling the origins of ice nucleation on organic crystals† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c8sc02753f , 2018, Chemical science.

[492]  Alexei Korolev,et al.  Supersaturation of Water Vapor in Clouds , 2003 .

[493]  Andrew Gettelman,et al.  Sensitivity studies of dust ice nuclei effect on cirrus clouds with the Community Atmosphere Model CAM5 , 2012 .

[494]  Hugh Morrison,et al.  On Calculating Deposition Coefficients and Aspect-Ratio Evolution in Approximate Models of Ice Crystal Vapor Growth , 2019, Journal of the Atmospheric Sciences.

[495]  Jun-Ichi Yano,et al.  Size Distributions of Hydrometeors: Analysis with the Maximum Entropy Principle , 2016 .

[496]  Timo Nousiainen,et al.  Small Irregular Ice Crystals in Tropical Cirrus , 2011 .

[497]  George E. P. Box,et al.  Sampling and Bayes' inference in scientific modelling and robustness , 1980 .

[498]  A. Okuyama,et al.  An Introduction to Himawari-8/9— Japan’s New-Generation Geostationary Meteorological Satellites , 2016 .

[499]  Harry T. Ochs,et al.  Collisions between Small Precipitation Drops. Part II: Formulas for Coalescence, Temporary Coalescence, and Satellites. , 1995 .

[500]  Jun-Ichi Yano,et al.  Ice–Ice Collisions: An Ice Multiplication Process in Atmospheric Clouds , 2011 .

[501]  R. G. Corbin,et al.  The influence of entrainment on the evolution of cloud droplet spectra: I. A model of inhomogeneous mixing , 1980 .

[502]  Wojciech W. Grabowski Comparison of Eulerian Bin and Lagrangian Particle-Based Schemes in Simulations of Pi Chamber Dynamics and Microphysics , 2019, Journal of the Atmospheric Sciences.

[503]  Qingfu Liu,et al.  Variational Optimization Method for Calculation of Cloud Drop Growth in an Eulerian Drop-Size Framework , 1997 .

[504]  Anders A. Jensen,et al.  Microphysical Characteristics of Squall-Line Stratiform Precipitation and Transition Zones Simulated Using an Ice Particle Property-Evolving Model , 2017 .

[505]  Tyler Smith,et al.  Bayesian methods in hydrologic modeling: A study of recent advancements in Markov chain Monte Carlo techniques , 2008 .

[506]  Martin Gallagher,et al.  Aircraft observations of the influence of electric fields on the aggregation of ice crystals , 2005 .

[507]  Ronald L. Drake The Scalar Transport Equation of Coalescence Theory: Moments and Kernels , 1972 .

[508]  J. Harrington,et al.  A Method for Adaptive Habit Prediction in Bulk Microphysical Models. Part I: Theoretical Development , 2013 .

[509]  K. D. Beheng,et al.  Representation of microphysical processes in cloud‐resolving models: Spectral (bin) microphysics versus bulk parameterization , 2015 .

[510]  Jacob P. Fugal,et al.  Cloud particle size distributions measured with an airborne digital in-line holographic instrument , 2009 .

[511]  M. Yau,et al.  A Multimoment Bulk Microphysics Parameterization. Part II: A Proposed Three-Moment Closure and Scheme Description , 2005 .

[512]  J. Strapp,et al.  Isokinetic TWC Evaporator Probe: Development of the IKP2 and Performance Testing for the HAIC-HIWC Darwin 2014 and Cayenne 2015 Field Campaigns , 2016 .

[513]  Robin J. Hogan,et al.  Numerical modelling of mixed‐phase frontal clouds observed during the CWVC project , 2005 .

[514]  Derek J. Posselt,et al.  Quantification of Cloud Microphysical Parameterization Uncertainty using Radar Reflectivity , 2012 .

[515]  B. J. Mason,et al.  Generation of electric charge associated with the formation of soft hail in thunderclouds , 1961, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[516]  Olivier P. Prat,et al.  A Robust Numerical Solution of the Stochastic Collection–Breakup Equation for Warm Rain , 2007 .

[517]  K. Beard,et al.  Ice initiation in warm-base convective clouds: An assessment of microphysical mechanisms , 1992 .

[518]  Paul R. Field,et al.  Aircraft Observations of Ice Crystal Evolution in an Altostratus Cloud , 1999 .

[519]  Wojciech W. Grabowski,et al.  Broadening of Cloud Droplet Spectra through Eddy Hopping: Turbulent Entraining Parcel Simulations , 2018, Journal of the Atmospheric Sciences.

[520]  A. Zadra,et al.  Modernization of Atmospheric Physics Parameterization in Canadian NWP , 2019, Journal of Advances in Modeling Earth Systems.

[521]  D. A. Johnson,et al.  Freezing and shattering of supercooled water drops , 1968 .

[522]  Charles B. Roosen,et al.  An introduction to multivariate adaptive regression splines , 1995, Statistical methods in medical research.

[523]  Samuel Haimov,et al.  Ice in Clouds Experiment—Layer Clouds. Part I: Ice Growth Rates Derived from Lenticular Wave Cloud Penetrations , 2011 .

[524]  Yuan Wang,et al.  Aerosol impacts on clouds and precipitation in eastern China: Results from bin and bulk microphysics , 2012 .

[525]  Olivier P. Prat,et al.  The Impact of Raindrop Collisional Processes on the Polarimetric Radar Variables , 2014 .

[526]  Angelos Michaelides,et al.  A Blue-Sky Approach to Understanding Cloud Formation , 2016 .

[527]  Gary James Jason,et al.  The Logic of Scientific Discovery , 1988 .

[528]  Hui Wan,et al.  Parametric Sensitivity and Uncertainty Quantification in the Version 1 of E3SM Atmosphere Model Based on Short Perturbed Parameter Ensemble Simulations , 2018, Journal of Geophysical Research: Atmospheres.

[529]  H. Morrison,et al.  Parameterization of Cloud Microphysics Based on the Prediction of Bulk Ice Particle Properties. Part I: Scheme Description and Idealized Tests , 2015 .

[530]  I. Geresdi,et al.  Idealized simulation of the Colorado hailstorm case: comparison of bulk and detailed microphysics , 1998 .

[531]  Nils Erland L. Haugen,et al.  Eulerian and Lagrangian approaches to multidimensional condensation and collection , 2016 .

[532]  Katsuhiro Kikuchi,et al.  Unknown and Peculiar Shapes of Snow Crystals Observed at Syowa Station, Antarctica , 1970 .

[533]  Jean-Pierre Pinty,et al.  LIMA (v1.0): A quasi two-moment microphysical scheme driven by a multimodal population of cloud condensation and ice freezing nuclei , 2016 .

[534]  Christopher P. Woods,et al.  The Occurrence of “Irregular” Ice Particles in Stratiform Clouds , 2007 .

[535]  Graham Feingold,et al.  Evolution of Raindrop Spectra. Part I: Solution to the Stochastic Collection/Breakup Equation Using the Method of Moments. , 1988 .

[536]  B. Swanson,et al.  Air pockets and secondary habits in ice from lateral-type growth , 2019 .

[537]  Christopher J. Schultz,et al.  Drop size distribution comparisons between Parsivel and 2-D video disdrometers , 2011 .

[538]  J. Marshall,et al.  THE DISTRIBUTION OF RAINDROPS WITH SIZE , 1948 .

[539]  M. Sambridge,et al.  Transdimensional inference in the geosciences , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[540]  Simon Unterstrasser,et al.  Collection/aggregation algorithms in Lagrangian cloud microphysical models: Rigorous evaluation in box model simulations , 2016 .

[541]  J. F. Meirink,et al.  The Cloud_cci simulator v1.0 for the Cloud_cci climate data record and its application to a global and a regional climate model , 2019, Geoscientific Model Development.

[542]  T. Andrews,et al.  Strong Dependence of Atmospheric Feedbacks on Mixed‐Phase Microphysics and Aerosol‐Cloud Interactions in HadGEM3 , 2019, Journal of advances in modeling earth systems.

[543]  Shian-Jiann Lin,et al.  DYAMOND: the DYnamics of the Atmospheric general circulation Modeled On Non-hydrostatic Domains , 2019, Progress in Earth and Planetary Science.

[544]  Edwin X. Berry,et al.  An Analysis of Cloud Drop Growth by Collection Part II. Single Initial Distributions , 1974 .

[545]  M. Khairoutdinov,et al.  A New Cloud Physics Parameterization in a Large-Eddy Simulation Model of Marine Stratocumulus , 2000 .

[546]  Alessandro Battaglia,et al.  On the Realism of the Rain Microphysics Representation of a Squall Line in the WRF Model. Part II: Sensitivity Studies on the Rain Drop Size Distributions , 2019, Monthly Weather Review.

[547]  Jen-Ping Chen,et al.  Physically based two‐moment bulkwater parametrization for warm‐cloud microphysics , 2004 .

[548]  P. Kollias,et al.  Observed relations between snowfall microphysics and triple‐frequency radar measurements , 2015 .

[549]  R. Easter,et al.  Nonlinear Advection Algorithms Applied to Interrelated Tracers: Errors and Implications for Modeling Aerosol–Cloud Interactions , 2009 .

[550]  R. P. Lawson,et al.  Secondary Ice Production: Current State of the Science and Recommendations for the Future , 2016 .

[551]  Thomas Leisner,et al.  Probing ice-nucleation processes on the molecular level using second harmonic generation spectroscopy , 2015 .

[552]  A. Pokrovsky,et al.  Factors Determining the Impact of Aerosols on Surface Precipitation from Clouds: An Attempt at Classification , 2008 .

[553]  Peter V. Hobbs,et al.  Rapid development of high ice particle concentrations in small polar maritime cumuliform clouds , 1990 .

[554]  T. Neumann Probability Theory The Logic Of Science , 2016 .

[555]  Mengistu Wolde,et al.  Evaluation of a high‐resolution numerical weather prediction model's simulated clouds using observations from CloudSat, GOES‐13 and in situ aircraft , 2018, Quarterly Journal of the Royal Meteorological Society.

[556]  Kai Zhang,et al.  Investigating ice nucleation in cirrus clouds with an aerosol‐enabled Multiscale Modeling Framework , 2014 .

[557]  K. D. Beheng,et al.  A double-moment parameterization for simulating autoconversion, accretion and selfcollection , 2001 .

[558]  Edward J. Zipser,et al.  Dynamical Influence of Microphysics in Tropical Squall Lines: A Numerical Study , 1997 .

[559]  Alexander Khain,et al.  Possible Effects of Collisional Breakup on Mixed-Phase Deep Convection Simulated by a Spectral (Bin) Cloud Model , 2005 .

[560]  Andrew J. Heymsfield,et al.  A scheme for parameterizing ice cloud water content in general circulation models , 1990 .

[561]  Jana Mendrok,et al.  SPARE‐ICE: Synergistic ice water path from passive operational sensors , 2014 .