Bode-like Integral for Continuous-Time Closed-Loop Systems in the Presence of Limited Information

This paper analyzes causal closed-loop continuous-time systems in the presence of limited information. Assuming that the exogenous signals can be modeled as a stochastic process, a mutual information rate inequality is obtained that can be viewed as an extended Bode-type formula for stationary processes. The tightness of the resulting Bode's integral inequality is then analyzed for the linear time invariant closed loops. Within the developed framework we consider the control-communication interplay and analyze the underlying fundamental limitations.

[1]  N. Elia The Information Cost of Loop Shaping Over Gaussian Channels , 2005, Proceedings of the 2005 IEEE International Symposium on, Mediterrean Conference on Control and Automation Intelligent Control, 2005..

[2]  Pablo A. Iglesias,et al.  Tradeoffs in linear time-varying systems: an analogue of Bode's sensitivity integral , 2001, Autom..

[3]  Bing-Fei Wu,et al.  A simplified approach to Bode's theorem for continuous-time and discrete-time systems , 1992 .

[4]  Young-Han Kim Feedback Capacity of Stationary Gaussian Channels , 2006, ISIT.

[5]  Naira Hovakimyan,et al.  Bode-like integral for stochastic switched systems in the presence of limited information , 2011 .

[6]  H. W. Bode,et al.  Network analysis and feedback amplifier design , 1945 .

[7]  Robin J. Evans,et al.  Topological feedback entropy and Nonlinear stabilization , 2004, IEEE Transactions on Automatic Control.

[8]  Keith Glover,et al.  Minimum entropy H[infinity] control , 1990 .

[9]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[10]  J. Massey CAUSALITY, FEEDBACK AND DIRECTED INFORMATION , 1990 .

[11]  Richard H. Middleton,et al.  Fundamental limitations in control over a communication channel , 2008, Autom..

[12]  Richard H. Middleton,et al.  Feedback stabilization over signal-to-noise ratio constrained channels , 2007, Proceedings of the 2004 American Control Conference.

[13]  Jacob Ziv,et al.  Mutual information of the white Gaussian channel with and without feedback , 1971, IEEE Trans. Inf. Theory.

[14]  Haim H. Permuter,et al.  Directed information and causal estimation in continuous time , 2009, 2009 IEEE International Symposium on Information Theory.

[15]  Prashant G. Mehta,et al.  Bode-Like Fundamental Performance Limitations in Control of Nonlinear Systems , 2010, IEEE Transactions on Automatic Control.

[16]  Lei Guo,et al.  Fundamental limitations of discrete-time adaptive nonlinear control , 1999, IEEE Trans. Autom. Control..

[17]  Munther A. Dahleh,et al.  Fundamental Limitations of Disturbance Attenuation in the Presence of Side Information , 2005, CDC 2005.

[18]  A. N. Shiryayev The Theory of Transmission of Information , 1993 .

[19]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[20]  Naira Hovakimyan,et al.  Noise attenuation over additive Gaussian channels , 2010, 49th IEEE Conference on Decision and Control (CDC).

[21]  Wing Shing Wong,et al.  Systems with finite communication bandwidth constraints. II. Stabilization with limited information feedback , 1999, IEEE Trans. Autom. Control..

[22]  S. Verdu,et al.  Sensitivity of the rate-distortion function of stationary continuous-time Gaussian processes to non-Gaussian contamination , 1997, Proceedings of IEEE International Symposium on Information Theory.

[23]  Pablo A. Iglesias,et al.  Nonlinear extension of Bode's integral based on an information-theoretic interpretation , 2003, Syst. Control. Lett..

[24]  Richard H. Middleton,et al.  Minimum Variance Control Over a Gaussian Communication Channel , 2008, IEEE Transactions on Automatic Control.

[25]  Sekhar Tatikonda,et al.  Stochastic linear control over a communication channel , 2004, IEEE Transactions on Automatic Control.

[26]  Nicola Elia,et al.  When bode meets shannon: control-oriented feedback communication schemes , 2004, IEEE Transactions on Automatic Control.

[27]  A. Matveev,et al.  Estimation and Control over Communication Networks , 2008 .

[28]  Shunsuke Ihara,et al.  Information theory - for continuous systems , 1993 .

[29]  R. Evans,et al.  Stabilization with data-rate-limited feedback: tightest attainable bounds , 2000 .

[30]  Pablo A. Iglesias,et al.  Logarithmic integrals and system dynamics: An analogue of Bode's sensitivity integral for continuous-time, time-varying systems , 2002 .

[31]  Sekhar Tatikonda,et al.  Control over noisy channels , 2004, IEEE Transactions on Automatic Control.

[32]  Amiel Feinstein,et al.  Information and information stability of random variables and processes , 1964 .

[33]  Andrei N. Kolmogorov,et al.  On the Shannon theory of information transmission in the case of continuous signals , 1956, IRE Trans. Inf. Theory.

[34]  Christoph Kawan,et al.  Invariance Entropy for Control Systems , 2009, SIAM J. Control. Optim..

[35]  Shinji Hara,et al.  Characterization of a complementary sensitivity property in feedback control: An information theoretic approach , 2009, Autom..

[36]  Charalambos D. Charalambous,et al.  Control of Continuous-Time Linear Gaussian Systems Over Additive Gaussian Wireless Fading Channels: A Separation Principle , 2008, IEEE Transactions on Automatic Control.

[37]  P. Gács,et al.  KOLMOGOROV'S CONTRIBUTIONS TO INFORMATION THEORY AND ALGORITHMIC COMPLEXITY , 1989 .

[38]  Munther A. Dahleh,et al.  Feedback Control in the Presence of Noisy Channels: “Bode-Like” Fundamental Limitations of Performance , 2008, IEEE Transactions on Automatic Control.

[39]  K. Glover,et al.  Minimum entropy H ∞ control , 1990 .

[40]  Ali H. Sayed,et al.  A survey of spectral factorization methods , 2001, Numer. Linear Algebra Appl..

[41]  Charalambos D. Charalambous,et al.  LQG optimality and separation principle for general discrete time partially observed stochastic systems over finite capacity communication channels , 2008, Autom..

[42]  Shunsuke Ihara,et al.  Information capacity of the stationary Gaussian channel , 1991, IEEE Trans. Inf. Theory.

[43]  Graham C. Goodwin,et al.  Fundamental Limitations in Filtering and Control , 1997 .

[44]  R. Gallager Information Theory and Reliable Communication , 1968 .

[45]  Shlomo Shamai,et al.  Mutual information and minimum mean-square error in Gaussian channels , 2004, IEEE Transactions on Information Theory.